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Assist. Prof. Ahmet Öncü . . . . . . . . . . . . . . . . . . .

DATE OF APPROVAL: 07.May.2014



iii

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to Prof. Murat Çelik for his invalu-
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ABSTRACT

NUMERICAL MODEL FOR AXISYMMETRIC

INDUCTIVELY COUPLED PLASMA (ICP) IN

RADIO-FREQUENCY (RF) ION THRUSTERS

A numerical model is developed to evaluate the inductively coupled plasma prop-

erties in a 2-D axisymmetric domain inside an RF ion thruster discharge chamber. The

model is built by incorporating an electromagnetic model with a fluid model to describe

the plasma. The three species, ions, electrons and neutrals, inside the plasma are mod-

eled assuming that they obey the continuum approach. The spatial distributions of

flow parameters are obtained by solving the fluid equations with the SIMPLE algorithm

using the finite volume discretization. The flow parameters that can be monitored are

ion number density, ion velocity in three dimensions, neutral number density, neutral

velocity in three dimensions, electron flux, electron temperature, electric potential and

electromagnetic fields. The resulting flow parameters are used to evaluate the thruster

performance and efficiency. The model presented in this study demonstrates the same

tendency with the experimental results from the literature and verified through com-

parison with commercial codes. The code is implemented as a software framework,

which is named as AETHER, using C++ programming language. The model lays

out that after a certain amount of power deposition, there is a trade-off between the

efficiency and the thrust in an RF ion thruster.
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ÖZET

RADYO-FREKANSI İYON MOTORLARI İÇİN EKSENEL

SİMETRİK İNDÜKTİF ETKİLEŞİMLİ PLAZMA

MODELLEMESİ

Radyo-frekansı iyon motorları içinde bulunan indüktif etkileşimli plazma parame-

trelerini elde etmek için iki boyutlu eksenel simetri kullanılarak bir sayısal model

geliştirildi. Sayisal model akişkan ve elektromanyetik modellerin etkileşimi göz önüne

alınarak oluşturuldu. Model, plazmayı oluşturan iyonlar, elektronlar ve nötr gazin

süreklilik yasasina uyduğu var sayılarak geliştirildi. Akış parametrelerinin konum-

sal dağılımlari, model denklemlerinin sonlu hacimler yöntemiyle SIMPLE algoritmasi

kullanılarak çozülmesiyle elde edildi. İyon parçacık yoğunluğu, üç boyutta iyon hız

dağılımı, nötr parçacık yoğunluğu, üç boyutta nötr parçacık hız dağılımı, elektron akışı,

elektron sıcaklığı, elektron potansiyel ve elektromanyetik alan dağılımları geliştirilen

model ile hesaplandı. Elde edilen parametreler iyon motoru performansını ölçmek için

kullanıldı. Bu çalışmada sunulan model ile elde edilen sonuçlarin literatürdeki deneyler-

lerle aynı eğilimleri gösterdiği gözlemlendi ve model ticari kullanıma açık bir yazılımla

doğrulandı. Model C++ programlama dili kullanılarak AETHER ismi verilen yazılım

biçiminde kodlandı. Modelin uygulanması sonucu bir radyo-frekansı iyon motorunda

verim ile itki arasında doğrusal olmayan bir denge olduğu ortaya konuldu.
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1. INTRODUCTION

Plasma is existent in stars and places between stars in the free space. The word

“plasma” indicates an ionized gas, which contains electrons, ions and neutrals. Plasma

is the most common condition of the visible matter in the universe [5]. It is also found

on earth, being subject to many applications ranging from thermonuclear fusion to

semiconductor manufacturing and space propulsion, which is the subject of this work.

The properties of the plasma vary also depending on the application. The plasma in the

core of the stars is very hot and dense whereas the interstellar plasma is cold. Similarly,

low-temperature plasma is used in semiconductor processing, whereas hot and dense

plasma is required to be sustained in fusion applications. In this work, the focus is on

low-temperature, weakly-ionized, relatively dense inductively coupled plasma that is

generated through radio-frequency heating.

Plasma created on earth has the common problem of sustainability, which de-

pends on many factors including the energy deposition, gas pressure and ionization

fraction. The term radio-frequency (RF) plasma is used to indicate that the energy

deposition mechanism into the plasma is by RF coils. RF plasma can be classified into

three groups as inductively coupled, capacitively coupled, and helicon mode [1]. These

modes differ from each other depending on the direction of the electric field inside the

chamber that confines the plasma. If the electric field induced by RF coils is parallel

to the walls, the plasma is called inductively coupled, whereas if the electric field is

perpendicular to the walls, the plasma is called capacitively coupled. On the other

hand, in the helicon mode, the electric field is neither parallel nor perpendicular to the

chamber walls, but reaches the wall at a skewed angle.

Electric propulsion (EP) is an application area of plasma. It is a technology

aimed at generating the maximum possible thrust with high exhaust velocities and

minimum amount of propellant [6]. The reduction of the amount of propellant is the key

consideration here, since smaller propellant mass and a long-lasting propulsion system

can lead to high duration missions. The quantification of this property is performed
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with the parameter called specific impulse, Isp, which denotes the ratio between the

momentum and the weight of the exhaust particle. Isp is directly the measure of the

propellant mass required to change the velocity of an object (spacecraft or satellite) in

space. The relationship is laid out with the rocket equation [6]:

∆mp = m0

[
1− exp

(
−∆V

Ispg

)]
(1.1)

where ∆mp is the propellant mass to be spent for a velocity increase of ∆V , g is

the gravitational acceleration of earth, and m0 is the initial spacecraft mass. The

specific impulse therefore can be used as a parameter for fuel efficiency. Most advanced

chemical rockets can achieve up to 450 sec of specific impulse [7], a value which is easily

superseded by electric propulsion devices.

The idea of an RF ion thruster incorporates RF plasma physics into the EP

framework. As a member of the electric propulsion technology, the radio-frequency

ion engine, which is also known as RF ion thruster, is an easy-to-construct impulse

generator for small thrust values. It is a plasma-based device which utilizes electrostatic

force between grids to accelerate ionized gas out of the discharge chamber to generate

thrust. Examples from the literature can be found such that the thrust is varying from

10 mN to 200 mN with specic impulse values ranging from 2500 to 5500 sec [8].

The RF ion thrusters are first invented in the 1960s in Germany [9]. Giessen

University was the host of this invention. After that, Astrium GmbH, a private German

company, has adopted this development and managed to build thrusters which can

be used in space missions. The most advanced product of these early efforts was

RIT-10, which has a 10 cm discharge chamber diameter. RIT-10 is space tested in

1992. This spacetest was performed on the EURECA carrier. RIT-10 was incorporated

into the European ARTEMIS satellite, which was sent to the space for geo-stationary

communication purposes. RIT-10 is lifetime tested for 15,000 hours in 2000. The

commercially available RIT-10 package is also called as RITA [10].
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After the development of the RIT-10 ion thruster, German Space Agency (DARA)

has started a project in 1995 for RIT-15, which has a 15 cm chamber diameter and is

planned to deliver specific impulse more than 4000 seconds at 50 mN of thrust [9]. This

amount of specific impulse enables the application area of large geostationary satellites

and platforms for RF ion thrusters.

Miniaturization of RF ion thrusters are performed in the late 2000s. Astrium

GmbH and their partners in the academy developed RIT-µX, which is built for mi-

cropropulsion applications in 2007 [11]. In 2011, researchers from Giessen University

and Moscow Aviation Institute designed a very large ion thruster, RIT-45, which has

a discharge chamber diameter of 46.5 cm [12]. RIT-45 works with 35 kW power and

delivers a specific impulse of 7000 s.

1.1. Previous Modeling Effort

Plasma physics simulations are relatively new in the modeling world, since most

of the underlying physics is subject to further investigation. Numerical treatment of

inductively coupled plasma is performed many times in the literature. Electromagnetic

heating is the core of the process, which is again elaborated in many examples. Two

application areas, plasma processing and plasma torch modeling, come forward for the

fields that have similar physics as RF ion thrusters. Examples in the literature about

these fields are very helpful in building a numerical model for RF plasma.

As for the plasma processing, Kawamura [13] offers a numerical model for induc-

tively coupled plasma. Suekane [14] presented a simpler version of inductively coupled

plasma model for plasma torches, which the model developed in this study greatly

benefited from. This work includes the evaluation of the boundary conditions for the

electromagnetic equations. Hammond [15] built a 2D fluid model of the inductively

coupled plasma, which is an example on how to handle the electron energy equa-

tion. Kumar [16] and Hsu [17] also provided numerical models for inductively coupled

plasma, incorporating energy equations for electrons and also other species along with

the boundary conditions. Parent [18] developed a new scheme to solve for the species
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transport equations using fluid model for plasma.

Additional to the RF plasma modeling efforts, there are other methodologies

developed to simulate other EP plasma devices. The state of the art in plasma modeling

for electric propulsion applications is using the kinetic model with the Particle-In-Cell

(PIC) algorithm. Oh [19] laid out the basics of the particle tracking simulations for

quasi-neutral plasma. Fife [20] developed a hybrid-PIC simulation scheme where the

electrons are assumed to be fluid but remaining species are tracked using particles.

Szabo [7] developed a fully kinetic model for plasma thrusters. The code AQUILA [21]

is developed to simulate Hall thruster plume using the Hybrid-PIC approach.

There are few numerical models for ion thrusters in general, and there are models

for inductively coupled plasma, but the number of models for RF ion thruster is very

limited. A leading example [22] is based on evaluating the discharge loss per ion with an

analytical model. This 0D model is simple but successful at predicting the performance

of ion thrusters in real applications. It lays out the effect of the induced magnetic field

due to the RF coils on the ion confinement and discusses factors that result in a

decrease in the discharge loss per ion. Another recent 0D model [23] indicates a trade-

off between mass utilization efficiency and power transfer efficiency with increasing gas

flow rate.

Additional to the analytical models, there are also one or multi-dimensional RF

ion thruster discharge chamber modeling studies. A simple transformer model [2] is

first laid out for 1D modeling, assuming that the thruster is large enough to assume 1D

approach could be valid. Then this model is extended to a 2D model [8] which evaluates

the plasma parameters of RF ion thrusters with the help of additional experimental

data specific for the thruster to be modeled. In that study, the plasma is treated as

a continuum as it is treated in the same way as in this work. There are also studies

with the kinetic approach, using a PIC (Particle-In-Cell) code to solve for the spatial

distribution of the plasma parameters. An example model [24] is developed to evaluate

the performance of the micro RF ion thrusters. A 3D fully kinetic model [25], that

requires strong computation power, is laid out recently for RF ion thrusters.
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Compared to a PIC code implementation, the usage of the fluid approach de-

creases the computational cost drastically. Plasma must obey the continuum approach

for the fluid modeling to be possible. The investigation whether the inductively coupled

plasma inside the RF ion thruster discharge chamber obeys the continuum approach

is already performed [8]. Therefore a fluid model is developed in this work. The model

presented in this work consists of three main components: Electromagnetic model, fluid

model and the transformer model. The electromagnetic model handles the solution of

the Maxwell’s equations, the fluid model evaluates the flow of the plasma and the

transformer model evaluates the matching circuit parameters and most importantly

the alternating current magnitude to be supplied to the RF coils.

1.2. Concept and Description

The geometry of a conical and a cylindrical shaped discharge chamber can be

seen in Figure 1.1 . The simplicity of the construction comes from the fact that there

are no extra magnets that are needed to be assembled to generate a magnetic field

topology, which is the case for the other types of ion engines. The necessary energy

deposited into the partially ionized gas comes from the RF coils, which generates the

inductively coupled plasma. Screen and accelerator grids can be seen on the right

end of the discharge chamber, which accelerate ions out of the discharge chamber.

Manufacturing of these grids is also subject to a great effort, since a great precision is

required in the machining process. The grids can be made of several materials, such as

carbon and molybdenum, whereas the discharge chamber is generally made of dielectric

materials, such as quartz. Neutral Xenon gas is fed from the left end. Neutral Xenon

atoms get ionized with the energy provided by the RF coils. The output from the

discharge chamber is neutralized with a cathode, which can be seen aiming towards

the plume of the thruster.

The heating mechanism of the discharge is the RF heating that deposits energy to

the electrons. The electric field has only the component in the azimuthal direction and

causes the electrons move back and forth as the alternating current changes direction

in the coils. The time-varying electric field in the azimuthal direction induces magnetic
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Figure 1.1. Representation of the cylindrical and conical discharge chambers.

field in radial and axial directions. These magnetic fields affect the charged particle

velocities and they are accounted for in the scope of this study. The heated up electrons

collide with the neutral gas atoms that are present in the chamber. Some of these

collisions lead to ionization and therefore generate ions. The generated ions move

inside the discharge chamber under the effect of the varying magnetic fields. Ions that

are incident on the screen grid at the end of the discharge chamber are accelerated

due to the high potential difference between the grids and are accelerated out of the

chamber.
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2. THEORY

Plasma is a collection of charged particles that move under the effects applied

onto them or by the fields induced because of their charges. Plasma is on the average

electrically neutral, which means that the ion number density is equal to the electron

number density (ni = ne) [6]. This quasi-neutral medium is separated from the chamber

walls with a narrow region of positively charged particles, which is called as sheath.

The model which will be elaborated in the next section deals with the physics in the

quasi-neutral medium. The representation of the sheath and the quasi-neutral region

is given in Figure 2.1.

The existence of the sheath region is a consequence of the difference between the

mobility of electrons and ions in the plasma. Even though the sheath is not spatially

resolved in our model, it strongly affects the physics in the quasi-neutral part. Therefore

the plasma sheath will not be completely ignored.

There are three separate modes of RF plasmas, which are called E, H and W-

modes. These modes indicate different amount of energy coupling and result in different

amount of densities.

The first mode, E-mode, is observed when the RF electromagnetic fields result in

capacitively coupled plasma (CCP). Usually, the E-mode is observed when the plasma is

generated with two parallel electrodes by applying an RF voltage across them. Typical

plasma densities lies on the order of 1015 and 1016 m−3. The CCP is utilized in various

other applications like etching, which is not the interest of this work and therefore it

is not covered further.

The main interest of this work is the H-mode, which is observed in inductively

coupled plasmas (ICP). The reactors that process this type of plasmas are called in-

ductive reactors. In inductive reactors with external coils, plasma generally starts in

the E-mode and then switches to H-mode when the plasma density is increased to a
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Figure 2.1. Representation of the sheath and the quasi-neutral regions in a plasma [1].

certain degree. This phenomenon, called as the E-H transition, is a field of study by

itself. The physics of this transition is beyond the scope of this work. The plasma

investigated in this work lies in the H-mode and assumed to remain so. The average

density lies on the order of 1016 and 1018 m−3.

The third mode, W-mode, is observed in helicon plasmas. In this mode, RF

coils are supported by a background steady magnetic field to sustain a higher density

plasma. Helicon plasmas are used for example in deep etching of hard materials and in

the ionization stage of plasma thrusters. Typical densities in helicon mode lies above

1019 m−3.

RF ion thrusters work with the inductively coupled plasma in the H-mode. The

mode is important while determining equations to be included in the electromagnetic

model. On the other hand, the modeling of the plasma dynamics is handled separately.

There are two different approaches to the modeling of the plasma dynamics:



9

• Based on Kinetic Theory: This approach is known in the literature with its

common name as Particle-In-Cell (PIC). PIC relies on statistical physics and it

investigates the plasma in microscopic scale. Particle tracking with PIC relies

on solving the Newton’s first law of motion and electromagnetic field equations

simultaneously. In this method, velocity or energy distributions in phase space,

f(r,v, t), are tracked using conservation laws. PIC is useful for investigating

the microscale phenomena and turns out to be too complicated to investigate

the macroscopic or high-pressure phenomena. High-pressure plasma calculations

using PIC take too long. In this work, the PIC method is not preferred because

of its high computational cost.

• Based on Fluid Theory: This approach approximates plasma as a fluid con-

tinuum and the governing equations are obtained through the integration of dis-

tribution functions over the velocity. It is useful at investigating the macroscopic

behavior of the plasma. This approach is used and implemented in this work.

The details of this approach is explained in the following sections of the text.

Since the fluid approximation is derived from the kinetic equations through taking the

moments of the distribution conservation function, some basic definitions should be

stated before delving directly into the fluid model.

The first term that needs to be clarified is the “distribution function.” This func-

tion, f(r,v, t), defines the number of particles in phase-space. Phase-space is the

6-dimensional volume element consisting of position (r) and velocity (v) components.

The distribution function is the starting point for the derivation of many plasma pa-

rameters. For example, the number density of particles in the spatial volume element

d3r is found as:

n(r, t) =

∞∫
−∞

∞∫
−∞

∞∫
−∞

f(r,v, t)d3v (2.1)

The important parameters for the fluid model is derived by averaging quantities over

the velocity coordinates. For example, an important parameter for next derivations,
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the mean velocity is denoted as:

u = 〈v(r, t)〉 =
1

n(r, t)

∞∫
−∞

∞∫
−∞

∞∫
−∞

vf(r,v, t)d3v (2.2)

Another important statement for the following discussion is the assumption that f → 0

sufficiently rapidly as the velocity goes to infinity so that for all functions Ψ(v):

lim
|v|→∞

(Ψf) = 0 (2.3)

Distribution functions obey a conservation rule. One of the most important equations

of plasma physics is therefore the Boltzmann equation, which lays out the conserva-

tion scheme for the distribution function. The moments of this equation leads to the

derivation of the fluid equations. The Boltzmann equation is denoted as:

∂f

∂t
+ v· ∂f

∂r
+

F

m
· ∂f
∂v

=

(
∂f

∂t

)
c

(2.4)

where f is the distribution function in phase space, F denotes velocity independent

forces, r is the position vector and v is the velocity vector. The subscript c stands

for “collisions.” The term on the RHS is the symbolic representation of the collision

processes.

The equation above will be multiplied by a function Ψ(v) and then integrated

over velocity space. This procedure is named as “taking the moment of the kinetic

equation.” In the end, it will be shown that for the special cases of Ψ, continuity

and momentum equations for plasma can be derived. The analysis presented below is

obtained from [26].

When multiplied by Ψ(v) and integrated over the velocity, the first term on the

LHS of the Boltzmann equation becomes (since Ψ is independent of time):

∫
Ψ(v)

∂f

∂t
dv =

∂

∂t

∫
Ψfdv =

∂

∂t
(n〈Ψ〉) (2.5)
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Similarly, since Ψ is also independent of r, the second term becomes:

∫
Ψ(v)v· ∂f

∂r
dv =

∂

∂r
·
∫

Ψvfdv =
∂

∂r
· (n〈Ψv〉) (2.6)

The third term deals with the applied forces, F:

1

m

∫
Ψ(v)F· ∂f

∂v
dv =

F

m
·
∫ [

∂(Ψf)

∂v
− f ∂Ψ

∂v

]
dv (2.7)

where the first term on the RHS in square brackets goes to zero as the distribution

function vanishes as velocity goes to infinity, which means:

F

m
·
∫ [

∂(Ψf)

∂v
− f ∂Ψ

∂v

]
dv = − n

m
F·
〈
∂Ψ

∂v

〉
(2.8)

The formula above deals with the velocity independent force terms. But as it is the case

with Lorentz force, the forcing term F can also have a velocity dependent component.

In this case, using the summation convention:

e

mc

∫
Ψ(v)(v ×B)i

∂f

∂vi
dv (2.9)

This may be rewritten as:

e

mc

∫ [
∂

∂vi
(Ψf(v ×B)i)− f(v ×B)i

∂Ψ

∂vi

]
dv (2.10)

The first term vanishes in the limit where velocity goes to the infinity. This gives:

e

mc

∫
Ψ(v)(v ×B)· ∂f

∂v
dv = − ne

mc

〈
(v ×B)· ∂Ψ

∂v

〉
(2.11)

Writing the three terms of the Boltzmann equation gives the general moment equation:

∂n〈Ψ〉
∂t

+
∂

∂r
· (n〈vΨ〉)− n

m
F·
〈
∂Ψ

∂v

〉
− ne

mc

〈
(v ×B)· ∂Ψ

∂v

〉
=

∫
Ψ(v)

(
∂f

∂t

)
c

dv

(2.12)
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The continuity and momentum fluid equations are obtained by setting the parameter Ψ

to 1 and mu, respectively. The fluid equations in closed form are therefore: Continuity

equation (Ψ = 1):

∂n

∂t
+∇· (nu) = S − L (2.13)

Momentum equation (Ψ = mu)

nm

[
∂u

∂t
+ (u· ∇)u

]
= nqE−∇p−mu[nνm + S − L] (2.14)

where νm is the total elastic collision frequency. S and L denote the sources and the

losses, respectively. The fluid equations are derived from the Boltzmann equation. But

the information about the required parameters, like collision frequencies and reaction

rates, must be obtained from the distribution function. Therefore the Boltzmann

equation is valid for all kinds of distributions. For the RF plasmas investigated in this

work, it is assumed that the electrons have Maxwellian energy distribution function.

This approximation is supported by the empirical observations of Irving Langmuir,

where he discovered that the electron distribution function was nearly Maxwellian by

using the elestrostatic probes developed by himself [27].

Here the classical form of the Navier-Stokes equation should be remembered to

make a comparison with ordinary hydrodynamics. The momentum equation for the

ordinary fluids are formulated as:

ρ

[
∂u

∂t
+ (u· ∇)u

]
= −∇p+ µ∇2u (2.15)

where ρ is density, p is pressure and µ is viscosity. This is the same as the plasma

momentum Equation 2.14 except for the absence of the electromagnetic forces and

collisions between species. The equation above describes a fluid in which there are

frequent collisions between its particles, whereas Equation 2.14 is derived without any

explicit information regarding the collision rate [27]. This observation invokes the idea

that the term that contains the viscosity can be modeled using collision terms derived
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from the kinetic theory and Maxwellian distribution. The momentum source generated

by neutral-neutral particle collisions should be equal to the momentum generated by

the viscous term in the equation given above.

2.1. Maxwellian Distribution and Plasma-Wall Interactions

This study is based on the assumption that the electrons are distributed according

to the Maxwellian distribution. We derive all the necessary boundary conditions and

collision properties using this assumption.

The Maxwellian three-dimensional velocity distribution is given as [1]:

f(v) = n
( m

2πkT

)3/2

exp

(
−
m(v2

x + v2
y + v2

z)

2kT

)
(2.16)

where n is the number density, m is the mass, k is the Boltzmann constant, T is the

temperature and vx, vy, and vz are the velocity components in the specified directions.

This distribution is crucial for our discussion since it is used to evaluate the averaged

components.

The distribution equation given above is used to evaluate the particle and the

thermal flux at the boundaries. To find the particle flux in one particular direction,

say in our case the z direction, one should evaluate the integral:

Γwall = n
( m

2πkT

)3/2
∫ ∞
−∞

dvx

∫ ∞
−∞

dvy

∫ ∞
0

vzexp

(
−mv

2

2kT

)
dvz (2.17)

Here one should pay attention to the limits of the third integral, which is for the

vz component. To find the directed flux, the integral is evaluated over all x and y

components of the velocity but only the positive z components [1]. To evaluate this

integral, the following identities are used:

∫
xe−cx

2

dx = − 1

2c
e−cx

2

(2.18)
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∫ ∞
−∞

e−cx
2

dx =

√
π

c
(2.19)

By expanding v2 = v2
x + v2

y + v2
z , it can be seen that the first relation above can be

used to evaluate the integral for the z component of the velocity whereas the second

relation is utilized to evaluate the remaining two integrals in x and y components of

the velocity. Observing that c in the identities given above can be set equal to m/2kT

for this problem, the integral becomes:

Γwall = n
( m

2πkT

)3/2 π2kT

m

kT

m
= n

√
kT

2πm
= n

1

4

√
8kT

πm
(2.20)

The term in the result of the integral
√

8kT
πm

denotes the thermal velocity which needs

more elaboration. It is again evaluated using the Maxwellian distribution:

〈v〉 =
( m

2πkT

)3/2
∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

(v2
x + v2

y + v2
z)

1/2 exp

(
−
m(v2

x + v2
y + v2

z)

2kT

)
dvxdvydvz

(2.21)

This integral is equivalent to the expression using the Maxwellian speed distribution

form:

〈v〉 =
( m

2πkT

)3/2

4π

∫ ∞
0

v3 exp

(
−mv

2

2kT

)
dv (2.22)

To evaluate this integral, the following relationship is used:

∫ ∞
0

x3e−cx
2

=
1

2c2
(2.23)

Therefore, the result of this integral is:

〈v〉 = v̄ =

√
8kT

πm
(2.24)

which is called as the mean thermal velocity.

Here we have completed the derivation of an important plasma-wall interaction
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relation. The particle flux for a species under no particular force is given as:

Γwall = n
1

4
v̄ (2.25)

For the neutral species in our study this formulation specifies our boundary conditions

for particle flux with an additional wall recombination term which will be elaborated

later. For the electrons, the same procedure is applied with a slight difference. There

is a special region formed during the plasma flow, which is called the sheath, in the

locations very adjacent to the wall. For the electrons to reach the wall they should

overcome a potential denoted as ∆φ, the sheath potential [1]. If the energy balance is

formulated for an electron moving in the z direction and approaching the wall:

1

2
mv2

z = e∆φ (2.26)

vz =

√
2e∆φ

m
(2.27)

Using the same logic, the wall particle flux is evaluated with the following integral:

Γe,wall =

∫
V

vzf(v)dv = n
( m

2πkT

)3/2
∫ ∞
−∞

dvx

∫ ∞
−∞

dvy

∫ ∞
√

2e∆φ/m

vzexp

(
−mv

2

2kT

)
dvz

(2.28)

Using the first integral relation 2.18, the last integral becomes:

∫ ∞
√

2e∆φ/m

vzexp

(
−mv

2
z

2kT

)
dvz =

kT

m
exp

(
−e∆φ
kT

)
(2.29)

The remaining of the integral is evaluated using the second integral relation 2.19:

Γe,wall = n
( m

2πkT

)3/2 kT

m
exp

(
−e∆φ
kT

)
2kT

m
π = n

(
kT

π2m

)1/2

exp

(
−e∆φ
kT

)
=

nv̄

4
exp

(
−e∆φ
kT

)
(2.30)
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This yields the particle flux for the electrons on the boundary. This expression is very

similar to the wall particle flux calculated in 2.25. The difference in between is the

coefficient that contains the exponential function with the sheath potential drop.

The ion flux is formulated according to the physical limits for their motion. The

ions in the presheath region can accelerate only up to the Bohm velocity, which is

formulated as:

uB =

√
kTe
mi

(2.31)

where Te is the electron temperature and mi is the ion mass. Based on this formulation,

the ion flux to the wall is formulated as:

Γi,wall = niuB (2.32)

The sheath region adjacent to the wall does not affect the motion of the neutral species

and the Bohm velocity is not a limitation for neutrals since they have much less thermal

velocity. But the particle flux depends on the phenomenon named as wall recombi-

nation. The ions that reach the wall become neutral and go back into the discharge

chamber as neutral species. This phenomenon is represented with Figure 2.2. Using

the equation including that effect, the particle flux for the neutrals is denoted as:

Γn,wall =
nnv̄n

4
− γΓi,wall (2.33)

where the subscript n denotes the neutral species, and the coefficient γ denotes the ratio

of ions recombining at the wall to the neutrals. In this study, this value is taken to be

equal to 1. The thermal flux is again evaluated using the Maxwellian distribution. The

thermal flux is associated with the electrons, since they are the particles thermalized
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Figure 2.2. Representation of the wall recombination, where ions become neutrals.

in low temperature plasmas. Therefore, the energy flux leaving the plasma [1]:

Q =

〈
1

2
mv2vz

〉
= n

( m

2πkT

)3/2 m

2

∫ ∞
−∞

dvx

∫ ∞
−∞

dvy

∫ ∞
√

2e∆φ/m

v2vzexp

(
−mv

2

2kT

)
dvz

(2.34)

The integral is evaluated using the integration by parts rule and utilizing 2.18:

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
√

2e∆φ
m

v2vzexp

(
−mv

2

2kT

)
=

∫ ∞
−∞

∫ ∞
−∞

[
v2kT

m
exp

(
− m

2kT
(v2
x + v2

y + v2
z)
)]vz=

√
2e∆φ
m

dvydvx

+

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
√

2e∆φ
m

kT

m
2vzexp

(
− m

2kT
(v2
x + v2

y + v2
z)
)
dvzdvydvx (2.35)

To evaluate this integral, the integration by parts is used:

∫
qdp = qp−

∫
pdq (2.36)

To adapt this rule for the equation under consideration:

q = v2 (2.37)
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Figure 2.3. Representation of fluxes leaving the plasma and reaching the wall.

dp = vzexp

(
−mv

2

2kT

)
(2.38)

Evaluating this integral results in the RHS of Equation 2.35. For the sake of clarity, this

integral is investigated in two parts. The first part is the double integral expression

and the second part is the triple integral expression. Evaluating the first term, the

double integral:

∫ ∞
−∞

∫ ∞
−∞

(
v2
x + v2

y +
2e∆φ

m

)
kT

m
exp

(
−
m(v2

x + v2
y)

2kT

)
exp

(
−e∆φ
kT

)
dvydvx

=
kT

m
exp

(
−e∆φ
kT

)[∫ ∞
−∞

∫ ∞
−∞

(v2
x + v2

y)exp

(
−
m(v2

x + v2
y)

2kT

)
dvydvx+∫ ∞

−∞

∫ ∞
−∞

2e∆φ

m
exp

(
−
m(v2

x + v2
y)

2kT

)
dvydvx

]
(2.39)

So, the second term is separated into two double integrals. The second double integral

can be evaluated using the second integral relation 2.19:

∫ ∞
−∞

∫ ∞
−∞

2e∆φ

m
exp

(
−
m(v2

x + v2
y)

2kT

)
dvydvx =

2e∆φ

m
π

2kT

m
(2.40)
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The first double integral can be evaluated using the polar coordinates:

∫ ∞
−∞

∫ ∞
−∞

(v2
x + v2

y)exp

(
−
m(v2

x + v2
y)

2kT

)
dvydvx =

∫ 2π

0

∫ ∞
0

r2exp

(
−mr

2

2kT

)
rdrdθ

(2.41)

where r2 = v2
x + v2

y . The integral is evaluated using the relation 2.23:

∫ 2π

0

∫ ∞
0

r2exp

(
−mr

2

2kT

)
rdrdθ =

1

2

4k2T 2

m2
2π =

4k2T 2π

m2
(2.42)

With this result the evaluation of the double integral derived in 2.35 is completed. The

triple integral in this expression is evaluated as follows:

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
√

2e∆φ
m

kT

m
2vzexp

(
− m

2kT
(v2
x + v2

y + v2
z)
)
dvzdvydvx =∫ ∞

−∞

∫ ∞
−∞

2k2T 2

m2
exp

(
−
m(v2

x + v2
y)

2kT

)
exp

(
−e∆φ
kT

)
dvydvx (2.43)

Again, using 2.19:

2k2T 2

m2
exp

(
−e∆φ
kT

)∫ ∞
−∞

∫ ∞
−∞

exp
(
− m

2kT
(v2
x + v2

y)
)
dvydvx =

4k3T 3π

m3
exp

(
−e∆φ
kT

)
(2.44)

The whole expression can be evaluated by bringing the results together from 2.40, 2.42

and 2.44:

Q = n
( m

2πkT

)3/2 m

2

kT

m
exp

(
−e∆φ
kT

)[
2e∆φ

m
π

2kT

m
+

4k2T 2π

m2
+

4k2T 2π

m2

]
(2.45)

Evaluating the multiplications above yields:

Q =

[
n

√
kT

2πm
exp

(
−e∆φ
kT

)]
(2kT+e∆φ) =

[
nv̄

4
exp

(
−e∆φ
kT

)]
(2kT+e∆φ) (2.46)

The energy flux leaving the plasma is evaluated with this equation. According to [1],

the energy flux leaving the plasma and the energy flux to the wall are not equal. The
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energy flux to the wall is given as:

Qwall =

[
nv̄

4
exp

(
−e∆φ
kT

)]
(2kT ) (2.47)

As it can be realized from the ongoing discussion, there is a distinction between

the fluxes leaving the plasma and the fluxes reaching the wall. The distinction is

represented in Figure 2.3. Regarding the particle flux, the distinction actually is not

important due to the mass conservation, that is, the flux leaving the plasma from the

presheath nodes actually is the same with the flux reaching the wall. But in the case

of energy balance, things differ between the energy leaving the plasma and the energy

reaching the wall. The difference in the amount of energy is absorbed by the sheath.

2.2. Collision Cross-Sections and Reaction Rates

Reaction rate denotes the number of particles per volume taking part in a specific

type of reaction per second. Collisions that lead to a reaction is called as inelastic col-

lisions. For this study, two types of inelastic collisions are considered. These reactions

are formulated for the operating gas, Xenon, as follows:

• Ionization from neutral state: Xe + e− −→ Xe+ + e− + e−

• Excitation from neutral state: Xe + e− −→ Xe∗ + e−

The ionization reaction rate is utilized in the continuity equation for ions and

electrons as the source term and for neutrals as the loss term. Both the ionization and

excitation rates are accounted for in the electron energy balance equation, where the

reaction rates are used to calculate the energy loss due to inelastic collisions.

In this study, as stated many times before, the electrons are assumed to be

distributed according to the Maxwellian distribution. The reaction rates are therefore

defined as the product of the collision cross section and the electron thermal velocity
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Figure 2.4. Reaction rates of Argon and Xenon.

averaged over the Maxwellian. It is denoted as:

Q̄ =
〈
veσ

reaction
e−Xe

〉
(2.48)

where Q denotes the reaction rate, ve is the electron velocity and σreactione−Xe is the cross

section of the collision under consideration. The guidelines to calculate this expression

are presented in [28]. First, a normalized Maxwellian energy distribution for electrons

are assumed:

fe(Ee) =
2√
π

√
Ee

(kTe)3
e−

Ee
kTe (2.49)

the ionization reaction rate is calculated by the integral:

Q̄ =

∫ ∞
0

fe(Ee)σ
ion
e−Xe

√
2Ee
me

dEe =

∫ ∞
0

2Ee

√
2

π(kTe)3me

e−
Ee
kTe σione−XedEe (2.50)
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Figure 2.5. Xenon excitation and ionization cross sections.

where me is the electron mass, Ee is the electron energy, σione−Xe is the ionization collision

cross section as a function of energy, and
√

2Ee
me

is the electron velocity. The excitation

reaction rate is calculated with the same formula, by only changing the collision cross-

sections. This formula denotes a numerical integration over the electron energy, and is

a function of temperature. Therefore, during the simulation, the reaction rate value of

each node is evaluated according to the temperature value at this node.

The collision cross-section data is conventionally presented as a table which gives

the collision cross section in m2 for a particular energy level in eV . For the operating

gas, Xenon, the data for ionization and excitation is obtained from [6]. Also for Argon,

which is implemented in the code and can also be used in simulations, the data is

obtained from [29].
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Figure 2.6. Argon excitation and ionization cross sections.

2.3. Electron Energy Balance

It is necessary to investigate the energy balance of electrons to calculate the

electron temperature during simulations. Therefore the contribution of each physical

process should be included in the energy equation to be developed. Here the terms

that contribute to the electron energy balance equation are elaborated.

To start with the terms included in the energy balance, it is appropriate to express

the random kinetic energy for each particle, which is formulated as:

3

2
nkT (2.51)

where the same expression takes the form of 1
2
nkT for each direction. There is also a

directed kinetic energy associated with the volume element:

1

2
nmv2 (2.52)
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Another contribution to the energy balance is the electromagnetic work. Electromag-

netic work is also called as Joule heating (or cooling) due to the ambipolar electric

field. It is formulated as:

E· (nqv) (2.53)

where q denotes the charge of the considered type of particle, which is −e for electrons.

While writing the balance equation for a parameter, the flux across the boundaries

of the control volume for this parameter is included into the equation. Energy flux

across the boundary of an infinitesimal element is formulated as:

∇·Q = ∇·
∫

u
1

2
mu2f(u)d3u = ∇·< nu

1

2
mu2 > (2.54)

Q =< nu
1

2
mu2 > (2.55)

where f is the Boltzmann function in phase space. The velocity vector, u consists of

two components:

u = v + w (2.56)

where u is the velocity of the fluid element, v is the mean velocity of the fluid and

w is the difference between the velocity of the fluid element and the mean velocity.

Substituting this expression for u into the energy flux equation yields:

Q = n < (v + w)
1

2
m(v2 + 2vw + w2) > (2.57)
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Q = n

{
v

1

2
mv2+ < w >

1

2
mv2 + v

1

2
m < 2vw > +m < w·w > v+

v <
1

2
mw2 > + < w

1

2
mw2 >

}
(2.58)

This expression can be reduced to:

Q = v

(
1

2
nmv2

)
︸ ︷︷ ︸

convection of directed

(mean) kinetic energy

+ ¯̄p·v︸︷︷︸
rate at which plasma

pressure does work

+

3

2
nkTv︸ ︷︷ ︸

convection of thermal

(random) kinetic energy

+ q︸︷︷︸
heat flux due

to conduction

(2.59)

with the following identities:

¯̄p = m < ww > (2.60)

where ¯̄p denotes the pressure tensor. The conduction term is formulated as:

q =< w
1

2
mw2 >=

∫
w

1

2
mw2f(w)d3w (2.61)

So, putting the kinetic energy, electromagnetic work and the energy flux across the

boundary together yields the primitive form of the energy equation:

∂

∂t

(
3

2
nkT +

1

2
nmv2

)
+∇·Q = nqE·v + Psource (2.62)

where Psource denotes the problem specific source term on the energy equation. Re-

placing the energy flux term with its extended form yields:

∂

∂t

(
3

2
nkT +

1

2
nmv2

)
+∇·

(
1

2
nmv2v

)
+p (∇·v)+(∇·v)

3

2
nkT+∇·q = nqE·v+Psource

(2.63)

Using the relation p = nkT , and the fact that the directed kinetic energy is very small
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compared to the thermal energy, the above equation becomes:

∂

∂t

(
3

2
nkT

)
+∇·

(
5

2
nkT

)
v +∇·q = nqE·v + Psource (2.64)

The conduction term is expressed according to the Fourier Law:

q = −λ∇T (2.65)

where λ denotes the thermal conductivity of electrons. According to [13], [17], [30],

[31], [32], and [33]:

λ =
5

2

nee
2Te

meνelastic
(2.66)

Inserting this expression into 2.64:

∂

∂t

(
3

2
nkT

)
+∇·

(
5

2
nkT

)
v +∇·

(
−5

2

nee
2Te

meνelastic
∇Te

)
= nqE·v + Psource (2.67)

This equation is used as the energy equation in the model developed for this study.

The most important assumption in this formulation is that the electron directed kinetic

energy is small compared to the thermal energy. It is indeed true for the case of

ICP discharges, since there is no very strong external electromagnetic fields that can

actually confine and control the electron flow in RF plasma. The implementation of

this equation in the model is explained in the upcoming sections.
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3. NUMERICAL MODEL

The model consists of three submodels that communicate with each other through-

out the simulation. These submodels are namely the fluid model, the electromagnetic

model and the transformer model. Fluid equations are solved to evaluate the plasma

flow parameters, whereas the electromagnetic model handles the calculation of the elec-

tromagnetic fields and the transformer model captures the effect of the matching circuit

utilized in the real life experiments for constant power deposition. The equations are

discretized with the finite volume method and the resulting linear systems are solved

with iterative solvers including Jacobi and GMRES. The solved equations are continu-

ity and momentum for ions and neutrals, electric potential equation, energy equation

for electrons, and magnetic vector potential equation to evaluate the electromagnetic

fields.

The discussion starts with the electromagnetic model (Section 3.1) and continues

with the fluid model for plasma (Section 3.2). The underlying physics of these models

are elaborated previously in Chapter 2. Then the transformer model is presented,

whose formulations are obtained from previous works performed on inductively coupled

plasma (Section 3.3). In the end of this chapter, the numerical method utilized in this

work is explained (Section 3.4).

3.1. Electromagnetic Model

The RF heating model is based on the electromagnetic theory. Maxwell’s equa-

tions govern the underlying physics:

Gauss’ Law:

∇·E =
ρch
ε0

(3.1)
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Gauss’ Law for Magnetism:

∇·B = 0 (3.2)

Faraday’s Law:

∇× E = −∂B

∂t
(3.3)

Ampere’s Law:

∇×H = j +
∂D

∂t
(3.4)

also utilizing the relations:

B = µrµ0H = µH D = κε0E = εE (3.5)

The current density in Ampere’s Law is given as:

j = σE (3.6)

For the equations presented above, the information related to the symbols and their

meanings are presented in Table 3.1.

A special attention should be paid to Ampere’s Law, as it is known that it is

reformulated by adding the displacement current to the equation, which implies the

inductance of a magnetic field through the change in the electric field.

Considering the conditions of the ICP discharge plasma, the displacement current

can be neglected. Displacement currents are negligible in good conductors, and in this

case plasma is assumed to have a high conductivity [8]. This reduces the Ampere’s
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Table 3.1. Symbols in the Maxwell’s Equations.

Symbol Meaning SI Unit

E electric field volt per meter

B magnetic field tesla

D electric displacement field coulombs per square meter

H magnetic field intensity amperes per meter

j free current density amperes per meter square

ε0 permittivity of free space farads per meter

µ0 permeability of free space henries per meter

ρ total charge density coulombs per cubic meter

κ dielectric constant

µr relative permeability

ε = εrε0 permittivity of the medium farads per meter

µ = µrµ0 permeability of the medium henries per meter

σ electrical conductivity siemens per meter

Law to the following form:

∇×H = j (3.7)

Instead of solving all of the four Maxwell’s equations simultaneously, it is possible

to eliminate some steps of calculations using the geometry of the domain. For this

purpose, the magnetic vector potential, A, is introduced, which is defined as:

B = ∇×A ∇·A = 0 (3.8)

Inserting the magnetic field relation in Equation 3.5 into the magnetic vector potential

Equation 3.8:

µH = ∇×A (3.9)
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Inserting the relation found above into the reduced Ampere’s Law 3.7 yields:

∇×∇×A = µj (3.10)

A special attention should be paid to the magnetic permeability term. For the plasma

medium, the magnetic permeability is assumed as: µ = µ0. This assumption is demon-

strated to be valid for low-temperature plasmas in [34].

Here, vector identities should be used to evaluate the left hand side, which con-

tains two sequential cross products:

∇×∇×A = ∇(∇·A)−∇2A (3.11)

By the definition given in 3.8, first term on the right hand side at the relation given

above yields zero. Using this and the equation derived in 3.10:

∇2A = −µ0j (3.12)

The current density is expressed as in 3.6. Replacing this expression:

∇2A = −µ0σE (3.13)

Vector representing the electric field can also be replaced with a relation, which includes

the magnetic vector potential. This relation can be evaluated using the Faraday’s Law

3.3 and the definition of the magnetic vector potential 3.8:

∇× E = −∂B

∂t
= − ∂

∂t
∇×A = −∇× ∂A

∂t
(3.14)

This expression results in:

∇×
(

E +
∂A

∂t

)
= 0 (3.15)
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A scalar potential can be defined as:

E +
∂A

∂t
= −∇φ (3.16)

In the absence of an electrostatic field in the plasma, the scalar potential is equal to

zero [35]. The relation between the electric field and the magnetic vector potential is

therefore defined as:

E = −∂A

∂t
(3.17)

This relation can be inserted into 3.13:

∇2A = µ0σ
∂A

∂t
(3.18)

This equation is the main equation in our model. To investigate this equation further,

we need to define the vector Laplacian in cylindrical coordinates:

∇2A =



∂2Ar
∂r2 + 1

r2
∂2Ar
∂θ2 + ∂2Ar

∂z2 + 1
r
∂Ar
∂r
− 2

r2
∂Aθ
∂θ
− Ar

r2

∂2Aθ
∂r2 + 1

r2
∂2Aθ
∂θ2 + ∂2Aθ

∂z2 + 1
r
∂Aθ
∂r
− 2

r2
∂Ar
∂θ
− Aθ

r2

∂2Az
∂r2 + 1

r2
∂2Az
∂θ2 + ∂2Az

∂z2 + 1
r
∂Az
∂r


In the case of magnetic vector potential, only the theta component is nonzero. Since

the coil currents flow in the azimuthal θ direction, the induced electric field must also be

in the θ direction. Thus, the inductive fields are in the transverse electric mode, where

the magnetic field has components in r and z. From the definition of the magnetic

potential 3.8, it is derived that the magnetic vector potential only has the azimuthal

component:

A = (0, Aθ, 0) (3.19)
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Figure 3.1. The loop on which the current flows and the important points used on

derivation.

From the vector Laplacian, and considering the fact that the magnetic vector potential

only has the azimuthal component, Equation 3.18 becomes:

∂2Aθ
∂r2

+
∂2Aθ
∂z2

+
1

r

∂Aθ
∂r
− Aθ
r2

= µ0σ
∂Aθ
∂t

(3.20)

Solution of this PDE is straightforward if the boundary conditions are known. The

boundary conditions will be found from the Biot-Savart law, which explores the mag-

netic field induced around a current carrying coil. Derivation here is based on the one

presented in [8], but the expression derived here is more general than the one found in

that text. Here also the geometry of the model should be elaborated. Biot-Savart law

is expressed as:

dB(P ) =
µ

4π

Idl× êR

R2
(3.21)

where µ is the magnetic permeability constant, dl is infinitesimal length of the coil

wire carrying current I, R is the radius of the coil, and êR is the unit displacement

vector from the wire element to the point at which the field is being computed. Here

P stands for the point.



33

For the following derivation, we assume a Cartesian coordinate system for sim-

plicity, but instead of (x,y,z) a (z,y,r) coordinate notation. The purpose of this notation

choice is to have the final result in (r,z) coordinates. This approach is valid since az-

imuthal component of the magnetic field is not considered [8]. It is assumed that the

origin of the coordinate system is aligned with the center of the current carrying coil

in the y-direction. The alignment of the coil in the coordinate system is presented in

Figure 3.1.

The required vectors for derivation are:

OP =


z

0

r

 OQ =


zc

a cos θ

a sin θ + rc


where a denotes the radius of the coil and θ is the angle between the radial coordinate

axis, which passes through the center point of the coil, and the vector connecting the

center point of the coil to the point Q. The vector R can be expressed as:

R = OP−OQ =


z − zc
−a cos θ

r − a sin θ − rc


Thus, to be used later:

R2 = z2 + z2
c + r2 + r2

c + a2 − 2rrc − 2zzc − 2ra sin θ + 2rca sin θ (3.22)

The elementary length vectors from the Biot-Savart law are denoted as:

dl =
d(OQ)

dθ
dθ =


0

−adθ sin θ

adθ cos θ

 eR =
R

|R|


z−zc
R

−a cos θ
R

r−a sin θ−rc
R


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The cross product in the Biot-Savart equation is performed as:

dl× eR =

∣∣∣∣∣∣∣∣∣
i j k

0 −adθ sin θ adθ cos θ

z−zc
R

−a cos θ
R

r−a sin θ−rc
R

∣∣∣∣∣∣∣∣∣
Substituting the result of this cross-product into the Biot-Savart law 3.21:

dB(P ) =
µ0I

4πR2

∣∣∣∣∣∣∣∣∣
−a sin θdθ

(
r−a sin θ−rc

R

)
+ a cos θdθ

(
a cos θ
R

)(
z−zc
R

)
a cos θdθ(

z−zc
R

)
a sin θdθ

∣∣∣∣∣∣∣∣∣
Rearranging the terms:

dB(P ) =
µ0I

4πR3

∣∣∣∣∣∣∣∣∣
−ar sin θ + arc sin θ + a2

za cos θ − zca cos θ

za sin θ − zca sin θ

∣∣∣∣∣∣∣∣∣ dθ

Again:

dB(P ) =
µ0Ia

4πR3

∣∣∣∣∣∣∣∣∣
−r sin θ + rc sin θ + a

z cos θ − zc cos θ

z sin θ − zc sin θ

∣∣∣∣∣∣∣∣∣ dθ =
µ0Ia

4π

∣∣∣∣∣∣∣∣∣
−r sin θ+rc sin θ+a

R3

(z−zc) cos θ
R3

(z−zc) sin θ
R3

∣∣∣∣∣∣∣∣∣ dθ

We need to integrate the expression to find the magnetic field components in r and z

directions. Remembering that:

R =
√
z2 + z2

c + r2 + r2
c + a2 − 2rrc − 2zzc − 2ra sin θ + 2rca sin θ (3.23)
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And it should be observed:

∂

∂z

(
1

R

)
= −1

2

(
2z − 2zc

(z2 + z2
c + r2 + r2

c + a2 − 2rrc − 2zzc − 2ra sin θ + 2rca sin θ)
3
2

)
= −z − zc

R3

∂

∂a

(
1

R

)
= −1

2

(
2a− 2r sin θ + 2rc sin θ

(z2 + z2
c + r2 + r2

c + a2 − 2rrc − 2zzc − 2ra sin θ + 2rca sin θ)
3
2

)
=
a− r sin θ + rc sin θ

R3

Using these relations, the magnetic field components can be expressed as:

dB(P ) =
µ0Ia

4π

∣∣∣∣∣∣∣∣∣
− ∂
∂a

(
1
R

)
− ∂
∂z

(
1
R

)
cos θ

− ∂
∂z

(
1
R

)
sin θ

∣∣∣∣∣∣∣∣∣ dθ

Separating into components and integrating:

Br = −µ0Ia

2π

∂

∂z

π
2∫

−π
2

sin θdθ

(z2 + z2
c + r2 + r2

c + a2 − 2rrc − 2zzc − 2ra sin θ + 2rca sin θ)
1
2

(3.24)

Bz = −µ0Ia

2π

∂

∂a

π
2∫

−π
2

dθ

(z2 + z2
c + r2 + r2

c + a2 − 2rrc − 2zzc − 2ra sin θ + 2rca sin θ)
1
2

(3.25)

To validate these equations, one can calculate the magnetic field components on the

center of the coil, namely on (rc, zc).

Br(rc, zc) = 0 (3.26)
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Bz(rc, zc) = −µ0Ia

2π

∂

∂a

π
2∫

−π
2

dθ

a
=
µ0I

2a
(3.27)

This result is as expected and the equations are therefore validated. Before calculating

the azimuthal component of the magnetic vector potential, more rearrangements can

be made. Defining:

φ =
θ + π/2

2
(3.28)

Using the trigonometric identities:

sin θ = sin (2φ− π/2) = −cos(2φ) = −(1− 2 sin2 φ) (3.29)

Then R becomes:

R =
√
z2 + z2

c + r2 + r2
c + a2 − 2rrc − 2zzc + 2ra(1− 2 sin2 φ)− 2rca(1− 2 sin2 φ)

(3.30)

It can be seperated into two components as follows:

R =
√

(z − zc)2 + (r − rc + a)2

√
1− 4a(r − rc) sin2 φ

(z − zc)2 + (r − rc − a)2
(3.31)

Here it is convenient to introduce a parameter, m:

m =
4a(r − rc)

(z − zc)2 + (r − rc + a)2
(3.32)

Rewriting the expression for radial magnetic field component using these variables:

Br =
µ0Ia

2π

∂

∂z

 1√
(z − zc)2 + (r − rc + a)2

π
2∫

0

2(1− 2 sin2 φ)√
1−m sin2 φ

dφ

 (3.33)

It is needed to do one more mathematical trick to form the expression suitable for
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complete elliptic integrals. Defining:

D = 1−m sin2 φ (3.34)

sin2 φ =
1−D
m

(3.35)

2− 4 sin2 φ = 2− 4

(
1− (1−m sin2 φ)

m

)
= 2− 4

m
+

4

m
(1−m sin2 φ) (3.36)

The radial component of the magnetic field becomes:

Br =
µ0Ia

2π

∂

∂z

 1√
(z − zc)2 + (r − rc + a)2

(2− 4

m

) π
2∫

0

dφ√
1−m sin2 φ

+

4

m

π
2∫

0

√
1−m sin2 φ dφ


 (3.37)

The expression above includes the complete elliptic integrals of first and second kind.

They are defined respectively as:

K(m) =

π
2∫

0

dφ√
1−m2 sin2 φ

(3.38)

E(m) =

π
2∫

0

√
1−m2 sin2 φ dφ (3.39)

The radial magnetic field component can be expressed using the elliptic integrals as:

Br =
µ0Ia

2π

∂

∂z

{
1√

(z − zc)2 + (r − rc + a)2

[(
2− 4

m

)
K(
√
m) +

4

m
E(
√
m)

]}
(3.40)
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Now, the magnetic vector potential can be defined from the radial component of the

magnetic field using the following relation:

−∂Aθ
∂z

= Br (3.41)

Therefore, magnetic vector potential is defined as:

Aθ = − µ0Ia

2π
√

(z − zc)2 + (r − rc + a)2

[(
2− 4

m

)
K(
√
m) +

4

m
E(
√
m)

]
(3.42)

where m is defined as in 3.32.

So, the expression found in 3.42 is used to evaluate the boundary condition. In

case of multiple coils, their effects will be superposed on every boundary point to find

the eventual BC value. When the coordinate system axis is aligned with the center of

the coil, the rc value is zero. Some rearrangements can be applied on 3.42 to have a

compact form.

For rc = 0:

m =
4ar

(z − zc)2 + (r + a)2
(3.43)

And

Aθ =
µ0Ia

2π
√

(z − zc)2 + (r + a)2

2

m

[
(2−m)K(

√
m)− 2E(

√
m)
]

(3.44)

Observe:

1√
(z − zc)2 + (r + a)2

=

√
m

2
√
ar

(3.45)

Inserting this expression into the magnetic vector potential equation results in the final
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compact form:

Aθ =
µ0I

2π

√
a

r

[(2−m)K(
√
m)− 2E(

√
m)]√

m
(3.46)

where the calculation of the elliptic integrals of first and second kind is elaborated in

Appendix A. This formula is the first part of the boundary condition on dielectric

walls and it represents the effect of the coil. For multiple coils, the magnetic vector

potential takes the form:

Aθ =
µ0I

2π

coil∑
i=1

√
a

R0

G(mi) (3.47)

where G(mi) is defined as:

G(mi) =

[
(2−mi)K(

√
mi)− 2E(

√
mi)
]

√
mi

(3.48)

The other component of the BC on dielectric walls comes from the induced current

density in the plasma. From the numerical point of view, the plasma will be divided

into N cylindrical control volumes and instead of the coil current, induced current in

plasma will be implemented into the formula from the Biot-Savart law. So the I in

the formula for the coil current contribution to the magnetic vector potential equation

will be replaced by jθ,iSi where Si denotes the side surface area whose normal is in the

azimuthal direction of the computational element. The full expression for the boundary

condition is:

Aθ(r, z) =
µ0I

2π

coil∑
i=1

√
a

r
G(mi) +

µ0

2π

element∑
i=1

√
ri
r
jθ,iSiG(mi) (3.49)

where ri denotes the element radial position. The boundary condition for the magnetic

vector potential equation in case of the dielectric walls are evaluated with the formula

given above.
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3.2. Fluid Model

The model continues with the fluid model whose foundations are explained in

Chapter 2. The fluid equations are listed below.

Continuity equations:

∂ni
∂t

+∇· (nivi) = Ṙi (3.50)

∂ne
∂t

+∇· (neve) = Ṙe (3.51)

∂nn
∂t

+∇· (nnvn) = −Ṙi (3.52)

Momentum equations:

mini

(
∂vi

∂t
+ vi· ∇vi

)
+k∇(niTi) = eniE+enivi×B−miniνin(vi−vn)−meniνei(vi−ve)

(3.53)

mene

(
∂ve

∂t
+ ve· ∇ve

)
+k∇(neTe) = −eneE−eneve×B−meneνen(ve−vn)−meneνei(ve−vi)

(3.54)

mnnn

(
∂vn

∂t
+ vn· ∇vn

)
+k∇(nnTn) = −mnnnνin(vn−vi)−mennνen(vn−ve) (3.55)

The power balance for electrons:

3

2

∂

∂t
(neeTe) +∇·Qe = −eEa·Γe + Pdep − Pcoll (3.56)
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Divergence-free current constraint:

∇· j = ∇· (nivi − neve) = 0 (3.57)

So, the model consists of the solutions for the 8 equations given above for the 8 param-

eters: ni, ne, nn, vi, ve, vn, Te and φ. These parameters represent ion number density,

electron number density, neutral number density, ion velocity, electron velocity, neutral

velocity, electron temperature, and electric potential, respectively. The term Ṙspecies

denotes the source, which indicates the production of the specified species.

These equations can be solved to evaluate the plasma parameters. But there

are some approximations applied in our model reduce the calculation costs. These

approximations can be listed as follows:

• The species under consideration are assumed to obey the ideal gas law, and

therefore the pressure gradient can be expressed as:

∇p ≈ k∇(nT ) (3.58)

where k denotes the Boltzmann’s constant and n is the particle number density.

• The discharge chamber plasma parameters are assumed to be axially symmetric.

Solutions are obtained in (r, z) plane, therefore azimuthal variations of density

and temperature variables are neglected. This is the most basic assumption of

our model. Thus, it allows us to reduce the 3D problem into a 2D problem.

• There will be no energy equation solved for ions and neutrals. Therefore, the

temperature of these two species is assumed to be constant. This assumption is

called as cold-gas approximation. The gas temperature can be taken as [8]:

Ti = Tn = 450K (3.59)

This approximation eliminates the temperature dependence in the pressure gra-

dient term in momentum Equations 3.53 and 3.55.
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• Quasi-neutrality, ni = ne, is assumed to hold throughout the domain, which

means that the plasma sheath region incident to the walls is not physically re-

solved. Ions are assumed to leave the domain with Bohm velocity, which is

formulated as:

vi =

√
kTe
mi

(3.60)

• It is known from the experiments that electron temperature in a RF ion thruster

discharge chamber is on the order of 3-5 eVs. This temperature range allows for

making the assumption that secondary electron emission from the chamber walls

is negligible. Also it is assumed that the double ionization is neglected, which

requires 21.21 eV ionization energy.

• Solving the momentum equation for electrons is computationally expensive be-

cause electrons have much higher velocities than ions and neutrals have. The

electron velocity can be captured properly only if a very small mesh size, on the

order of the Debye length, is used and a very small time step is chosen. To over-

come this challenge, an approximation to electron flux is used, which is called the

drift-diffusion approximation [13]. In this formulation the ion and neutral veloc-

ities are neglected compared to the electron velocity. It is also assumed that the

inertia terms of the momentum equation can be neglected because of the small

electron mass. This approximation eliminates the nonlinearity of the momentum

equation and the momentum equation becomes:

mene(νei + νen)ve = −∇Pe − eneE− eneve,θ ×B (3.61)

According to this expression the electron flux is:

Γe = neve = − k

meνelastic
∇(Tene)−

ene
meνelastic

(E + ve,θ ×B) (3.62)

where νelastic = νei+νen. With this formulation, the electron flux can be evaluated

with the plasma parameters that are obtained from the other equations of the

model.
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Since there is no external electron source inside the thruster, the quasi-neutrality

assumption makes the continuity equation for the electrons and ions identical. The

ion generation rate is therefore equal to the electron generation rate inside the solu-

tion domain, which means that for each ion generated, there is also an electron that

accompanies it. The ion generation rate is expressed as:

Ṙe = Ṙi = nnne < veQ̄ion > (3.63)

where Q̄ion is the ionization cross section and < veQ̄ion > is the Maxwellian averaged

ionization rate function. The evaluation of this rate function is explained in Section

2.2.

Momentum equations include collision frequencies that need further elaboration.

The collision terms are formulated as:

νen = c̄ennσen (3.64)

νei = c̄eniσei (3.65)

νin = c̄innσin (3.66)

σen is the electron-neutral scattering cross-section, σei is the electron-ion elastic collision

cross section, and σin is the ion-neutral elastic collision cross-section. These values

depend on the type of the gas and they can be obtained from the literature [29] for

Xenon and Argon. c̄e is electron thermal velocity which is formulated as:

c̄e =

√
8kTe
πme

(3.67)

Similarly, the ion thermal velocity is:

c̄i =

√
8kTi
πmi

(3.68)
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The energy equation includes the power deposition term, Pdep, which is formulated as:

Pdep =
1

2
σp|E|2 (3.69)

where σ denotes the plasma conductivity. This term is formulated as [36]:

σp =
ε0ω

2
p

meνelastic
(3.70)

where ε0 is the electric permittivity of free space. The expression includes the plasma

frequency, which is formulated as:

ωp =

√
nee2

ε0me

(3.71)

Another parameter that needs to be defined in the energy balance Equation 3.56 is the

power lost to elastic and inelastic collisions, Pcoll.

Pcoll = nenne < veQ̄ion > Uion + nenne < veQ̄exc > Uexc +

heavy∑
h

2me

mh

3

2
k(Te − Th)νehne

(3.72)

where, Uion is the first ionization energy, Uexc is the excitation energy, and the terms

in corner brackets represent the rate coefficients which are derived in Section 2.2. The

first term in the collision power loss expression denotes the power loss due to ionization,

whereas the second term is the power loss due to excitation collisions. The third term

with the summation sign is the energy loss due to the elastic collisions between the

electrons and the heavy species.

The first term on the right hand side of the energy Equation 3.56 denotes the

Joule heating from the ambipolar field. The electron flux term, Γe, is defined as:

Γe = neve (3.73)
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and

Ea = −De

µe

∇ne
ne

(3.74)

where De and µe are diffusion constant and electron mobility, respectively [5]. The

diffusion constant, diffusivity, is defined as:

De =
kTe

meνelastic
(3.75)

and the electron mobility:

µe = − e

meνelastic
(3.76)

The second term on the left hand side is called electron energy flux. And it is defined

as in Section 2.3:

Qe =
5

2
ΓeeTe −

5

2

nee
2Te

meνelastic
∇Te (3.77)

The first term above defines the energy transported by electron net motion while the

second term is the electron thermal conduction. The coefficient before the temperature

gradient in the above expression is called as the thermal conductivity of plasma:

λth =
5

2

nee
2Te

meνelastic
(3.78)

The divergence-free current constraint (Equation 3.57) is utilized to calculate the elec-

tric potential with the drift-diffusion approximation for electrons, which is formulated

in Equation 3.62. The electric potential is embedded in the electric field term, which

is formulated as:

E = −∇φ+
∂Aθ
∂t

(3.79)
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Inserting this formulation into the drift-diffusion approximation and plugging 3.62 into

the divergence-free current constraint (Equation 3.57) yields:

∇·
(
nevi +

k

meνelastic
∇(Tene)−

ene
meνelastic

∇φ+
ene

meνelastic
(ve,θ ×B)

)
= 0 (3.80)

Multiplying the whole expression with the elementary charge e to obtain expressions

containing the plasma conductivity and moving the electric potential term to the other

side of the equation:

∇· (σ∇φ) = e∇· (nevi) +∇·
(

ek

meνelastic
∇(Tene)

)
+∇· (σ(ve,θ ×B)) (3.81)

This equation completes the equations in the model developed in the scope of this

work.

Boundary conditions are extremely important, because they give the flow field its

identity. The solution domain extends up to the plasma sheath region and throughout

the domain it is assumed that the quasi-neutrality holds. In the end of the solution

boundaries, ions are assumed to leave out the domain with Bohm velocity:

vi =

√
kTe
mi

(3.82)

For the neutral momentum equation, it is assumed that the ions reaching the wall

undergo recombination and go back into the system as neutrals. Therefore it is imposed

that:

Γn = −Γi (3.83)

For the domain edge adjacent to the accelerator grids, the ion and neutral grid trans-

parency values are taken into account. Additional to the ions reflected from the grids,

the neutral flux is affected by the neutrals that leave the domain. The neutral flux
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adjacent to the grid is:

Γn = −(1− Φi)Γi − Φnnn
c̄n
4

(3.84)

where Φi denotes the ion transparency and Φn denotes the neutral transparency of the

grids.

Boundary condition for the energy equation is evaluated in Section 2.1. According

to the discussion presented in that section, the heat flux directed outwards from the

domain is formulated:

Q =

[
nv̄

4
exp

(
−e∆φ
kTe

)]
(2kTe + e∆φ) (3.85)

where ∆φ denotes the sheath potential drop at the sheath edge. The sheath poten-

tial drop is calculated using the fact that the dielectric walls have floating potential.

According to this, the net current reaching the wall is zero. For the net current to be

zero, the ion and electron flux reaching the wall should be zero:

niuB =
nec̄e

4
exp

(
e∆φ

kTe

)
(3.86)

where the left hand side is the expression for ion flux and the right hand side is the

electron flux. Due to the quasi-neutrality ion density is equal to the electron density

at the sheath edge: ni = ne. The sheath potential can be expressed as:

∆φ = −kTe
e

ln

(√
mi

2πme

)
(3.87)

3.3. Transformer Model

This transformer model is an adaptation of the model presented in [8]. The

examples of modeling the inductively coupled discharge as the secondary coil of an air

core transformer are to be found in [37].
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Figure 3.2. Representation of the transformer model. Plasma is represented as the

secondary of an air-core transformer. The figure on the right shows the transformed

circuit [2].

The transformer model is used to update the magnitude of the current supplied to

the RF coil. The concept is called the matching network. The coil current magnitude is

changed to increase the power deposition efficiency. There are models in the literature

that evaluate the whole ICP as the secondary coil of an air core transformer and

evaluate the global plasma parameters. Here in this work, as also presented in [8],

the transformer model is used to to evaluate the coil current for maximum power

deposition.

In the scope of this model, plasma is treated as a medium where the electrons

can flow through. The circuit representation of plasma and the transformer model are

depicted in Figure 3.2. In this figure C denotes the capacitance of the matching circuit,

Rc is the coil resistance, and Lc is the coil inductance. Rp and Lp are resistance and

inductance values of the plasma, respectively. The figure on the right hand side rep-

resents the circuit with transformed resistance and inductance, which are represented

by R2 and L2, respectively.

The self-inductance of the coil, in [H], which is modeled as a short-solenoid is

expressed as:

Lc = 0.002π (Dw × 100) (N2)

[
ln

(
4Dw

lc

)
− 1

2

]
× 10−6 (3.88)

where Dw is the winding diameter of the coil, which is taken as the outer diameter of
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the discharge chamber.

The plasma inductance is expressed as:

Lp = 0.002π(Dp × 100)

[
ln

(
4Dp

L

)
− 1

2

]
× 10−6 +

(
Rp

νen

)
(3.89)

The plasma resistance:

Rp =
2πR

σLδ
(3.90)

From the plasma resistance equation, it can be seen how the plasma is attributed the

characteristics of a conductor. The skin depth is formulated as:

δ =

√
2

ωµ0σ
(3.91)

The mutual inductance is written for a coaxial coil as follows:

Lm = 0.0095N
(Dp × 100)2√

(Dw × 100)2 + (lc × 100)2
(3.92)

and the transformed plasma inductance and resistance become:

L2 =
−ω2L2

mLp
R2
p + (ωLp)2

(3.93)

R2 =
ω2L2

mRp

R2
p + (ωLp)2

(3.94)

After these definitions, the two parallel impedances in the transformed circuit can be

defined as follows:

Z1 =
1

jωC
(3.95)
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Z2 = Rc +R2 + jωLc + jωL2 (3.96)

The total impedance is calculated from the well-known parallel impedances formula

Z =
Z1Z2

Z1 + Z2

=

(
1

jωC

)
(Rc +R2 + jωLc + jωL2)(

1
jωC

)
+ (Rc +R2 + jωLc + jωL2)

(3.97)

The total impedance is used to characterize the quality of the matching circuit by

including this term into the calculation of the power reflection:

PR =

∣∣∣∣Z − Z0

Z + Z0

∣∣∣∣2 × 100% (3.98)

The peak current is calculated as follows:

Ipeak =

√
2Z0Pforward

Z0

(
1− Z − Z0

Z + Z0

)
(3.99)

The peak current is used to calculate the RMS coil current which will be used to update

the current magnitude:

Icoil,RMS =

∣∣∣∣Ipeak ( Z1

Z1 + Z2

)
/
√

2

∣∣∣∣ (3.100)

3.4. Finite Volume Method and Discretization of Partial Differential

Equations

The discretization of partial differential equations are performed according to

the finite volume and finite difference discretization schemes. Finite volume method

is utilized to solve the fluid equations whereas finite difference is utilized to solve the

magnetic vector potential which is used to evaluate the electromagnetic fields.

Before delving into the details of the finite volume method, the discretization

schemes for the gradient and del operators in cylindrical coordinates are presented
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below.

The divergence of a vector, for example of the electron flux, Γe, takes the form

at r-z plane:

∇ · Γe =
∂Γe,z
∂z

+
1

r

∂(rΓe,r)

∂r
(3.101)

where Γe,r and Γe,z denote the components of the electron flux in radial and axial

directions, respectively.

The gradient of a scalar, for example of the electron temperature, Te, takes the

form at r-z plane:

∇Te =
∂Te
∂z

+
∂Te
∂r

(3.102)

The Laplacian of a scalar, for example of the electric potential, φ, takes the form

at r-z plane:

∇2φ =
∂2φ

∂r2
+

1

r

∂φ

∂r
+
∂2φ

∂z2
(3.103)

The equations included in the scope of the model presented contains either the

gradient, divergence or the Laplacian of the parameters. These operators are discretized

on the structured rectangular grid as follows:

First derivative in axial direction is discretized as:

∂φ

∂z
=
φi+1,j − φi−1,j

2∆z
(3.104)
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First derivative in radial direction is discretized as:

∂φ

∂r
=
φi,j+1 − φi,j−1

2∆r
(3.105)

The Laplacian operator that contains second derivatives is discretized as:

∇2φ =
φi+1,j − 2φi,j + φi−1,j

∆z2
+
φi,j+1 − 2φi,j + φi,j−1

∆r2
+

1

ri,j

φi,j+1 − φi,j−1

2∆r
(3.106)

where r denotes the radial coordinate of the node under consideration. These dis-

cretization formulas are utilized when finite difference discretization is applied to an

equation. For the electric potential, whose final form is presented above, finite differ-

ence discretization is applied.

For the continuity and momentum equations, that are formulated in Equations

3.50, 3.52, 3.53, and 3.55, finite volume method is utilized with the SIMPLE algorithm

[38].

SIMPLE algorithm relies on the mathematical formulation that the convective

terms (v· ∇v) in momentum equations actually represent the flux conservation across

the boundaries of a control volume element. Evaluating flux instead of trying to dis-

cretize the nonlinear convective term lays out a linear formulation of the momentum

equation and facilitates the solution of the flow equations.

Before proceeding, the details of the control volume element should be explained.

In this study, a structured rectangular mesh in cylindrical coordinates is utilized, which

means that the radial distance, ∆r, and the axial distance, ∆z, of each grid cell is

equal. This lays out a wedge shaped domain, where the volume of a cell is a function

of the radial position of the cell. An example volume element for the axially symmetric

domain is shown in Figure 3.3. In this figure it is observed that the west and east face
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Figure 3.3. Control volume cell in cylindrical coordinates.

areas are equal to teach other (Ae = Aw) whereas the north face area is larger than

the south face area (An > As).

The volume of a cell can be calculated first by evaluating the east or west area

and multiplying this expression by the axial distance, ∆z. According to this guideline,

the volume of a control volume cell is:

∆V = (πr2
n − πr2

s)
∆θ

2π
∆z = (rn + rs)(rn − rs)

1

2
∆θ∆z =

(rn + rs)

2
∆r∆θ∆z (3.107)

The structured, rectangular grid used in this work is represented in Figure 3.4. In

this grid the alignment of the nodes can be seen on the staggered grid. On a staggered

grid, the scalars are stored at the center of the control volume cell whereas the velocity

nodes are located at the boundaries. Staggered grids are used in fluid simulations to

avoid the odd-even decoupling between the pressure and velocity. Odd-even decou-

pling is a discretization error that can occur and lead to checkerboard patterns in the

solutions [39].

According to the staggered grid alignment, the number of nodes on the grid for

the flow parameters may vary. If it is desired to divide the axial domain in nz nodes,

and the radial domain in nr nodes, the axial velocity grid is (nz+ 1)× (nr), the radial

velocity grid is (nz) × (nr + 1) and the scalar parameter grid is (nz + 1) × (nr + 1).

The additional nodes are used to implement the boundary conditions, whose details
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Figure 3.4. Nodes on the structured grid. Number density and momentum equations

are solved using the staggered grid alignment.

are to be found in [38].

Two interger indices, (i, j), are used to locate a node on the staggered grid for

each parameter. Knowing these two indices, ∆r, ∆z, and the type of the parameter

(axial, radial vector components or scalar) allows for locating the node in the r-z plane.

It is also necessary to convert the two-index address to a one-index type of address for

implementation purposes. Therefore a third index, k, is introduced. The calculation

of k depends on which of the axial, radial vector components or scalar grids is under

consideration. For axial vector components this third index is named as ku, whereas it

is kv for radial vector components, and kp for the scalars. These indices are calculated

as:

kp = j(nz + 1) + i (3.108)

ku = j(nz) + i (3.109)

kv = j(nz + 1) + i (3.110)

The control volumes used in the numerical formulation depends also on the type of

the parameter under consideration. The structured staggered grid produces different

control volumes for each of the parameters, u, v, and n. Figure 3.5 represents the
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Figure 3.5. Control volumes for axial and radial velocities, and number density. Left

top shows the control volume for axial velocity, whereas left bottom is for number

density and right is for the radial velocity.

neighboring parameters and their indices for the three control volume types. In this

formulation nu, nv, and np represents the number of nodes in the axial direction for

axial velocity, radial velocity, and the number density, respectively.

The finite volume method starts with writing the momentum equations in radial

and axial directions. Here the application of the method for ions is demonstrated. It

is straightforward to apply the same scheme to neutrals.

Before writing these equations in radial and axial directions, some terms in these

equations should be elaborated. The Lorentz force (v ×B) is expanded as:

v ×B =

∣∣∣∣∣∣∣∣∣
r̂ θ̂ ẑ

v w u

Br 0 Bz

∣∣∣∣∣∣∣∣∣ = (wBz)r̂− (vBz − uBr)θ̂ + (−wBr)ẑ
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Convective terms in the momentum equation need also to be elaborated. The expres-

sion, v· ∇v in cylindrical coordinates:

v· ∇v =



v ∂v
∂r

+ w
r
∂v
∂θ
− w2

r
+ u∂v

∂z

v ∂w
∂r

+ w
r
∂w
∂θ

+ vw
r

+ u∂w
∂z

v ∂u
∂r

+ w
r
∂u
∂θ

+ u∂u
∂z


where the velocity vector is defined as:

v(r, θ, z) = (v(r, z), w(r, z), u(r, z)) (3.111)

Using these identities, the ion momentum Equation 3.53 takes the form in axial

direction:

mini

(
∂ui
∂t

+ ui
∂ui
∂z

+ vi
∂ui
∂r

)
= −kTi

∂ni
∂z

+eniEz−eniwiBr−miniνin(ui−un) (3.112)

where the forcing term due to electron-ion collisions is neglected due to the small mass

of electrons. Similarly in radial direction:

mini

(
∂vi
∂t

+ ui
∂vi
∂z

+ vi
∂vi
∂r
− w2

i

r

)
= −kTi

∂ni
∂r

+ eniEr + eniwiBz −miniνin(vi − vn)

(3.113)

Here it is also appropriate to present the neutral momentum equation in the two radial

coordinate system directions. Neutral momentum equation in axial direction:

mnnn

(
∂un
∂t

+ un
∂un
∂z

+ vn
∂un
∂r

)
= −kTn

∂nn
∂z

+miniνin(ui − un) (3.114)

This expression is much simpler than 3.112 because there is no electromagnetic force
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applied on neutral particles. Similarly, neutral momentum equation in radial direction:

mnnn

(
∂vn
∂t

+ un
∂vn
∂z

+ vn
∂vn
∂r
− w2

n

r

)
= −kTn

∂nn
∂r

+mnniνin(vi − vn) (3.115)

The finite volume formulation of these equations are written by integrating each pa-

rameter over the control volume. The left hand side of the ion momentum equation in

axial direction 3.112 can be expressed as:

mini
ui − uoi

∆t
∆V + (miniu

∗
iuiA)e − (miniu

∗
iuiA)w + (miniv

∗
i uiA)n −

(miniv
∗
i uiA)s (3.116)

where the convected parameter is the axial velocity, ui, and the subscripts of the

brackets denote the location of the cell faces. uoi denotes the axial ion velocity from the

previous time step. The superscript (*) of the velocity components denote the values

from the initial guess for the particular time step. For convenience, the following

naming is introduced:

Fe = (miniu
∗
iA)e Fw = (miniu

∗
iA)w Fn = (miniv

∗
iA)n Fs = (miniv

∗
iA)s (3.117)

where the velocity values, ui and vi in these equalities come from the previous iteration.

These values are calculated according to the neighboring parameters shown in Figure

3.5:

Fe = m
1

2

[(
nkp+1 + nkp+2

2

)
u∗ku+1 +

(
nkp + nkp+1

2

)
u∗ku

]
Ae (3.118)

Fw = m
1

2

[(
nkp + nkp+1

2

)
u∗ku +

(
nkp + nkp−1

2

)
u∗ku−1+

]
Aw (3.119)

Fn = m
1

2

[(
nkp + nkp+np

2

)
vkv +

(
nkp+1 + nkp+np+1

2

)
v∗kv+1

]
An (3.120)

Fs = m
1

2

[(
nkp + nkp−np

2

)
vkv−nv +

(
nkp+1 + nkp+1−np

2

)
v∗kv−nv+1

]
As (3.121)

The convected parameters, (ui)e, (ui)w, (ui)n, and (ui)s can be discretized according

to various differencing schemes. In this work, the central differencing approach [38] is
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obtained:

(ui)e =
uku + uku+1

2
, (ui)w =

uku−1 + uku
2

(3.122)

(ui)n =
uku + uku+nu

2
, (ui)s =

uku−nu + uku
2

(3.123)

After inserting these expressions into the expression 3.116 becomes:

mini
uku − uoku

∆t
∆V+

Fe
2

(uku+uku+1)−Fw
2

(uku−1+uku)+
Fn
2

(uku+uku+nu)−
Fs
2

(uku−nu+uku)

(3.124)

The right hand side of the axial momentum Equation 3.112 can be discretized as:

(
−kTi

nkp+1 − nkp
∆z

+ enku
φkp − φkp+1

∆z
− enkuwkuBr(ku) −minkuνin(uku − un(ku))

)
∆V

(3.125)

where the ku subscript for parameters other than the axial velocity denotes their in-

terpolation to the location of the axial velocity. For the convenience of applying the

SIMPLE algorithm, the coefficients will be written in the form of:

akuuku = aku+1uku+1 + aku−1uku−1 + aku+nuuku+nu + aku−nuuku−nu + bsource (3.126)

where bsource denotes the source terms that do not include the axial velocity term and

a terms represent the coefficients in front of the velocity components. Coupling both

the left hand side and right hand side discretizations, the coefficients for the velocity

components are written as:

aku+1 = −Fe
2

aku−1 =
Fw
2

aku+nu = −Fn
2

aku−nu =
Fs
2

(3.127)

and the center coefficient is formulated as:

aku =
Fe
2
− Fw

2
+
Fn
2
− Fs

2
+minku

∆V

∆t
+minkuνin∆V (3.128)

These 5 coefficients build up the coefficient matrix. The source term is formulated as
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follows:

bsource =

(
−kTi

nkp+1 − nkp
∆z

+ enku
φkp − φkp+1

∆z
− enkuwkuBr(ku) +minkuνinun(ku)

)
∆V

(3.129)

The axial momentum equation is solved using these coefficients. A very similar formu-

lation can be performed for the radial momentum equation. The left hand side of the

momentum equation in radial direction 3.113 can be written as:

mini
vi − voi

∆t
∆V + (miniu

∗
i viA)e − (miniu

∗
i viA)w + (miniv

∗
i viA)n −

(miniv
∗
i viA)s (3.130)

The same naming detailed in 3.117 is again performed for the radial direction. This

time parameters are defined as:

Fe = m
1

2

[(
nkp + nkp+1

2

)
u∗ku +

(
nkp+np + nkp+np+1

2

)
u∗ku+nu

]
Ae (3.131)

Fw = m
1

2

[(
nkp + nkp−1

2

)
u∗ku−1 +

(
nkp+np + nkp+np−1

2

)
u∗ku+nu−1

]
Aw (3.132)

Fn = m
1

2

[(
nkp+np + nkp+2np

2

)
vkv+nv +

(
nkp + nkp+np

2

)
v∗kv

]
An (3.133)

Fs = m
1

2

[(
nkp + nkp+np

2

)
vkv +

(
nkp + nkp−np

2

)
v∗kv−nv

]
As (3.134)

The convected parameters, (vi)e, (vi)w, (vi)n, and (vi)s can be discretized according

to various differencing schemes. In this work, the central differencing approach [38] is

obtained:

(vi)e =
vkv + vkv+1

2
, (vi)w =

vkv−1 + vkv
2

(3.135)

(vi)n =
vkv + vkv+nv

2
, (vi)s =

vkv−nv + vkv
2

(3.136)

After inserting these expressions into the expression 3.130 becomes:

mini
vkv − vokv

∆t
∆V +

Fe
2

(vkv+vkv+1)−Fw
2

(vkv−1+vkv)+
Fn
2

(vkv+vkv+nv)−
Fs
2

(vkv−nv+vkv)

(3.137)
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The right hand side of the radial momentum Equation 3.113 can be discretized as:

(
−kTi

nkp+np − nkp
∆r

+ enkv
φkp − φkp+np

∆r
+ enkvwkvBz(kv) −minkvνin(vkv − vn(kv))

+
w2
kv

rkv

)
∆V

(3.138)

where the kv subscript for parameters other than the radial velocity denotes their

interpolation to the location of the radial velocity. For the convenience of applying the

SIMPLE algorithm, the coefficients will be written in the form of:

akvvkv = akv+1vkv+1 + akv−1vkv−1 + akv+nvvkv+nv + akv−nvvkv−nv + bsource (3.139)

where bsource denotes the source terms that do not include the radial velocity term and

a terms represent the coefficients in front of the radial velocity components. Coupling

both the left hand side and right hand side discretizations, the coefficients for the radial

velocity component are written as:

akv+1 = −Fe
2

akv−1 =
Fw
2

akv+nv = −Fn
2

akv−nv =
Fs
2

(3.140)

and the center coefficient is formulated as:

akv =
Fe
2
− Fw

2
+
Fn
2
− Fs

2
+minkv

∆V

∆t
+minkvνin∆V (3.141)

These 5 coefficients build up the coefficient matrix. The source term is formulated as

follows:

bsource =

(
−kTi

nkp+np − nkp
∆r

+ enkv
φkp − φkp+np

∆r
+ enkvwkvBz(kv) +

w2
kv

rkv

+minkvνinvn(kv)

)
∆V (3.142)

The equations for neutral momentum is discretized with the same procedure here,

therefore their discretization will not be shown. The next step is to formulate the
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continuity equation, which is the heart of the SIMPLE algorithm.

The ion continuity Equation 3.50 is extended in cylindrical coordinates as follows:

∂ni
∂t

+
∂(niui)

∂z
+

1

r

∂(nirvi)

∂r
= Ṙ (3.143)

which can be also written as:

1

r

∂(nir)

∂t
+

1

r

∂(nirui)

∂z
+

1

r

∂(nirvi)

∂r
= Ṙ (3.144)

and multiplying both sides with r yields:

∂(nir)

∂t
+
∂(nirui)

∂z
+
∂(nirvi)

∂r
= rṘ (3.145)

Finite volume discretization of the equation given above is:

(
∂(nir)

∂t

)
V

+ (niruiA)e − (niruiA)w + (nirviA)n − (nirviA)s =
(
rṘ
)
V

(3.146)

For simplicity, u, v and n are used during the following discussion instead of ui, vi and

ni.

In this step it is appropriate to introduce the logic of the SIMPLE algorithm.

The first step of the SIMPLE algorithm is formulating the variables to be found into

two components:

u = u∗ + u′ (3.147)

v = v∗ + v′ (3.148)

n = n∗ + n′ (3.149)

where the superscript (*) denotes the component, which is guessed or calculated from

the guessed initial conditions. The other superscript (′) denotes the corrector compo-
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nent. The algorithm starts with solving the discretized momentum equations with the

guessed number density field, n∗. The acquired solution fields are denoted as u∗ and v∗.

To derive the correction terms, subtracting the solution of the momentum equations

(u∗ and v∗) using the guessed number density field (n∗) yields:

aku(uku − u∗ku) =
∑

axy(uxy − u∗xy) + (Su − S∗u)∆V (3.150)

in axial direction. In radial direction:

akv(vkv − v∗kv) =
∑

axy(vxy − v∗xy) + (Sv − S∗v)∆V (3.151)

When the corrections 3.147 are utilized, equations above become:

akuu
′
ku =

∑
axyu

′
xy + S ′u∆V (3.152)

akvv
′
kv =

∑
axyv

′
xy + S ′v∆V (3.153)

Main approximation of the SIMPLE algorithm is the omission of the summation term,

which is the first term on the right hand side of the both equations. The SIMPLE

algorithm relies on the assumption that the correction terms denoted with the summa-

tion sign are very small, especially as the algorithm converges to the actual solution.

So the equations become:

akuu
′
ku = S ′u∆V (3.154)

akvv
′
kv = S ′v∆V (3.155)

where S ′u and S ′v terms are called as the correction terms for the axial and radial
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velocities, respectively. The velocity corrections for ions are therefore formulated as:

u′ku =

[
en′ku

φw − φe
∆z

− en′kuwkuBr(ku) − kTi
n′kp+1 − n′kp

∆z
+min

′
kuνinvn(ku)

]
∆V

aku

(3.156)

v′kv =

[
en′kv

φs − φn
∆r

+ en′kvwkvBz(kv) − kTi
n′kp+np − n′kp

∆r
+min

′
kv

w2
kv

r

+min
′
kvνinvn(kv)

] ∆V

akv

(3.157)

With these formulations velocity corrections are expressed in terms of number density

corrections. Here it is appropriate to explain the handling of the continuity equation in

the scope of the SIMPLE algorithm. Continuity equation serves as the number density

correction equation in the model presented here. Terms in the continuity equation

are written in terms of the number density corrections. The terms included in the

discretized Equation 3.146 can be written in terms of the number density corrections

as follows [40]:

(nruA) = (n∗ + n′)r(u∗ + u′)A = n∗ru∗A+ n∗ru′A+ n′ru∗A+ n′ru′A (3.158)

where u∗, v∗ and n∗ are known before the start of the iteration. The last term in

the equation above, which contains the multiplication of number density and velocity

corrections, is neglected assuming that this terms is small [40]. To calculate the neutral

number density correction, the velocity corrections given in Equation 3.156 are plugged

into the finite volume discretization formulated in Equation 3.146 and the coefficients

are calculated.

Discretizations of the remaining equations solved in the model are presented in

the remaining part of this section. These equations are:

• Ion continuity equation (Equation 3.50)

• Neutral continuity equation (Equation 3.52)

• Neutral momentum equation in axial direction (Equation 3.114)
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• Neutral momentum equation in radial direction (Equation 3.115)

• Electron power balance equation (Equation 3.56)

• Electric potential equation (Equation 3.81)

3.4.1. Ion Continuity Equation

Ion continuity equation is formulated in Equation 3.50. For convenience, this

equation is written here again:

∂ni
∂t

+∇· (nivi) = Ṙi

whose finite volume discretization is given in 3.146:

(
∂(nir)

∂t

)
V

+ (niruiA)e − (niruiA)w + (nirviA)n − (nirviA)s =
(
rṘ
)
V

Using the expansion formulated in Equation 3.158, the discretization for the continuity

equation is performed. As stated in Section 3.4, the continuity equations are used to

solve the number density corrections that are used to correct the initial number density

guess, which generally comes from the previous iteration. The first term on the left

hand side, the transient term, can be discretized as:

n∗i,kp + n′i,kp − noi,kp
∆t

r∆V

The second, third, fourth and fifth terms, which denote the fluxes passing through the

four boundaries of the control volume, are expanded as:

(niruiA)e = n∗i,kuu
∗
i,kurAh + n∗i,kuu

′
i,kurAh + n′i,kuu

∗
i,kurAh

(niruiA)w = n∗i,ku−1u
∗
i,ku−1rAh + n∗i,ku−1u

′
i,ku−1rAh + n′i,kuu

∗
i,ku−1rAh

(nirviA)n = n∗i,kvv
∗
i,kvrnAn + n∗i,kvv

′
i,kvrnAn + n′i,kvv

∗
i,kvrnAn

(nirviA)s = n∗i,kv−nvv
∗
i,kv−nvrsAs + n∗i,kv−nvv

′
i,kv−nvrsAs + n′i,kv−nvv

∗
i,kv−nvrsAs
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where the velocity correction terms, u′, need to be defined as well. These terms are

formulated as:

u′i,ku =

(
eTi

n′kp − n′kp+1

∆z
+ n′i,kue

φkp − φkp+1

∆z

)
r∆V

aP,ku

u′i,ku−1 =

(
eTi

n′kp−1 − n′kp
∆z

+ n′i,ku−1e
φkp−1 − φkp

∆z

)
r∆V

aP,ku−1

v′i,kv =

(
eTi

n′kp − n′kp+np
∆r

+ n′i,kve
φkp − φkp+np

∆z
+min

′
i,kv

w2
i,kv

r

)
r∆V

aP,kv

v′i,kv−nv =

(
eTi

n′kp−np − n′kp
∆r

+ n′i,kv−nve
φkp−np − φkp

∆z
+min

′
i,kv−nv

w2
i,kv−nv

r

)
r∆V

aP,kv

where aP,ku is the center coefficient for the ion momentum equation in axial direction,

and it is formulated as given in 3.128. Similarly, the center coefficient for the ion

momentum equation in radial direction, aP,kv, is fomulated as given in 3.141.

The right hand side of the ion continuity equation represents the particle gener-

ation rate which is caused by ionization. This term is discretized as:

nn,kpne,kp 〈veQion〉 r∆V

Here it should be emphasized that the number densities evaluated on the velocity nodes

are linear interpolations of the neighboring number density nodes:

n′i,ku =
n′i,kp + n′i,kp+1

2
n′i,ku−1 =

n′i,kp−1 + n′i,kp
2

n′i,kv =
n′i,kp + n′i,kp+np

2
n′i,kv−nv =

n′i,kp−np + n′i,kp
2

These identities and the discretizations given above result in the following coefficients
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for the coefficient matrix:

aN =
1

2
vi,kvrnAn − n∗i,kvrnAn

rn∆V

aP,kv

(
eTi
∆r
− eφkp − φkp+np

2∆r
− 1

2

miw
2
i,kv

r

)
aS = −1

2
vi,kv−nvrsAs − n∗i,kv−nvrsAs

rs∆V

aP,kv−nv

(
eTi
∆r

+ e
φkp−np − φkp

2∆r
+

1

2

miw
2
i,kv−nv

r

)
aE =

1

2
ui,kurAh − n∗i,kurAh

r∆V

aP,ku

(
eTi
∆z
− eφkp − φkp+1

2∆z

)
aW =

1

2
ui,ku−1rAh − n∗i,ku−1rAh

r∆V

aP,ku−1

(
eTi
∆z

+ e
φkp−1 − φkp

2∆z

)

and the central coefficient is:

aP = −1

2
ui,ku−1rAh +

1

2
ui,kurAh +

1

2
vi,kvrnAn −

1

2
vi,kv−nvrsAs + n∗i,ku−1rAh

r∆V

aP,ku−1

(
eTi
∆z

−eφkp−1 − φkp
2∆z

)
+ n∗i,kurAh

r∆V

aP,ku

(
eTi
∆z

+ e
φkp − φkp+1

2∆z

)
+ n∗i,kvrnAn

rn∆V

aP,kv

(
eTi
∆r

+

e
φkp − φkp+np

2∆r
+

1

2

miw
2
i,kv

r

)
+ n∗i,kv−nvrsAs

rs∆V

aP,kv−nv

(
−1

2

miw
2
i,kv−nv

r
− eφkp−np − φkp

2∆r
+

+
eTi
∆r

)
+
r∆V

∆t

The remaining terms are handled as the source term that builds up the right hand side

of the linear system. The source term is formulated as:

bsource = n∗i,ku−1u
∗
i,ku−1rAh − n∗i,kuu∗i,kurAh + n∗i,kv−nvv

∗
i,kv−nvrsAs − n∗i,kvv∗i,kvrnAn−

r∆V
n∗i,kp − noi,kp

∆t
+ nn,kpne,kp 〈veQion〉 r∆V

3.4.2. Neutral Continuity Equation

Neutral continuity equation is formulated in Equation 3.52. For convenience, this

equation is written here again:

∂nn
∂t

+∇ · (nnvn) = −Ṙi
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whose finite volume discretization can be formulated very similar to 3.146:

(
∂(nnr)

∂t

)
V

+ (nnrunA)e − (nnrunA)w + (nnrvnA)n − (nnrvnA)s = −
(
rṘ
)
V

For the neutral continuity equation, almost exact steps and expansions are used as the

ones presented for the ion continuity equation in the previous section. According to

these same guidelines, the transient term on the left hand side is discretized as:

n∗n,kp + n′n,kp − non,kp
∆t

r∆V

The second, third, fourth and fifth terms, which denote the fluxes passing through the

four boundaries of the control volume, are expanded as:

(nnrunA)e = n∗n,kuu
∗
n,kurAh + n∗n,kuu

′
n,kurAh + n′n,kuu

∗
n,kurAh

(nnrunA)w = n∗n,ku−1u
∗
n,ku−1rAh + n∗n,ku−1u

′
n,ku−1rAh + n′n,kuu

∗
n,ku−1rAh

(nnrvnA)n = n∗n,kvv
∗
n,kvrnAn + n∗n,kvv

′
n,kvrnAn + n′n,kvv

∗
n,kvrnAn

(nnrvnA)s = n∗n,kv−nvv
∗
n,kv−nvrsAs + n∗n,kv−nvv

′
n,kv−nvrsAs + n′n,kv−nvv

∗
n,kv−nvrsAs

where the velocity correction terms, u’, need to be defined as well. These terms are

formulated as:

u′n,ku =

(
eTn

n′kp − n′kp+1

∆z

)
r∆V

aP,ku

u′n,ku−1 =

(
eTn

n′kp−1 − n′kp
∆z

)
r∆V

aP,ku−1

v′n,kv =

(
eTi

n′kp − n′kp+np
∆r

+mnn
′
n,kv

w2
n,kv

r

)
r∆V

aP,kv

v′n,kv−nv =

(
eTi

n′kp−np − n′kp
∆r

+mnn
′
n,kv−nv

w2
n,kv−nv

r

)
r∆V

aP,kv

where aP,ku is the center coefficient for the neutral momentum equation in axial direc-

tion 3.159, and aP,kv is the center coefficient for the neutral momentum equation in

radial direction 3.161.
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The right hand side of the neutral continuity equation represents the loss of

neutral particles due to ionization. This term is discretized as:

nn,kpne,kp 〈veQion〉 r∆V

As it is the case with the ion continuity equation, it should be emphasized that the

number densities evaluated on the velocity nodes are linear interpolations of the neigh-

boring number density nodes:

n′n,ku =
n′n,kp + n′n,kp+1

2
n′n,ku−1 =

n′n,kp−1 + n′n,kp
2

n′n,kv =
n′n,kp + n′n,kp+np

2
n′n,kv−nv =

n′n,kp−np + n′n,kp
2

These identities and the discretizations given above result in the following coefficients

for the coefficient matrix:

aN =
1

2
vn,kvrnAn − n∗n,kvrnAn

rn∆V

aP,kv

(
eTn
∆r
− 1

2

mnw
2
n,kv

r

)
aS = −1

2
vn,kv−nvrsAs − n∗n,kv−nvrsAs

rs∆V

aP,kv−nv

(
eTn
∆r

+
1

2

miw
2
i,kv−nv

r

)
aE =

1

2
un,kurAh − n∗n,kurAh

r∆V

aP,ku

eTn
∆z

aW =
1

2
un,ku−1rAh − n∗n,ku−1rAh

r∆V

aP,ku−1

eTn
∆z

and the central coefficient is:

aP = −1

2
un,ku−1rAh +

1

2
un,kurAh +

1

2
vn,kvrnAn −

1

2
vn,kv−nvrsAs + n∗n,kurAh

r∆V

aP,ku

eTi
∆z

+n∗n,ku−1rAh
r∆V

aP,ku−1

eTn
∆z

+ n∗n,kvrnAn
rn∆V

aP,kv

(
eTn
∆r

+
1

2

mnw
2
n,kv

r

)
+n∗n,kv−nvrsAs

rs∆V

aP,kv−nv

(
−1

2

miw
2
i,kv−nv

r
+
eTi
∆r

)
+
r∆V

∆t

The remaining terms are handled as the source term that builds up the right hand side
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of the linear system. The source term is formulated as:

bsource = n∗n,ku−1u
∗
n,ku−1rAh − n∗n,kuu∗n,kurAh + n∗n,kv−nvv

∗
n,kv−nvrsAs − n∗n,kvv∗n,kvrnAn−

r∆V
n∗n,kp − non,kp

∆t
− nn,kpne,kp 〈veQion〉 r∆V

3.4.3. Neutral Momentum Equation in Axial Direction

The discretization of the momentum equation in axial direction for ions is rep-

resented before in Section 3.4. The formulation here follows the same procedure, but

neutral momentum equation is relatively simpler because there is no Lorentz force

acting on neutral particles.

The neutral momentum equation in axial direction is formulated in Equation

3.114. Here for convenience, this equation is written again:

mnnn

(
∂un
∂t

+ un
∂un
∂z

+ vn
∂un
∂r

)
= −kTn

∂nn
∂z

+miniνin(ui − un)

The discretization of the left hand side of this equation is identical to 3.116. The right

hand side of this equation can be discretized as:

(
−kTn

nkp+1 − nkp
∆z

+minkuνin(ui(ku) − uku)
)

∆V

In the form that is given in 3.126, the coefficients aku+1, aku−1, aku+nu, and aku−nu are

formulated as the same given in 3.127. The center coefficient is formulated as:

aku =
Fe
2
− Fw

2
+
Fn
2
− Fs

2
+mnnku

∆V

∆t
+minkuνin∆V (3.159)

The linear system is completed with the right hand side, which is formulated as:

bsource =

(
−kTn

nkp+1 − nkp
∆z

+minkuνinui(ku)

)
∆V (3.160)
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3.4.4. Neutral Momentum Equation in Radial Direction

The neutral momentum equation in radial direction is formulated in Equation

3.115. Here for convenience, this equation is written again:

mnnn

(
∂vn
∂t

+ un
∂vn
∂z

+ vn
∂vn
∂r
− w2

n

r

)
= −kTn

∂nn
∂r

+miniνin(vi − vn)

The discretization of the left hand side of this equation is identical to 3.130. The right

hand side of this equation can be discretized as:

(
−kTn

nkp+np − nkp
∆r

+mini,kvνin(vi(kv) − vkv) +
w2
kv

rkv

)
∆V

In the form that is given in 3.139, the coefficients akv+1, akv−1, akv+nv, and akv−nv are

formulated as the same given in 3.140. The center coefficient is formulated as:

akv =
Fe
2
− Fw

2
+
Fn
2
− Fs

2
+mnnkv

∆V

∆t
+minkvνin∆V (3.161)

The linear system is completed with the right hand side, which is formulated as:

bsource =

(
−kTn

nkp+np − nkp
∆r

+
w2
kv

rkv
+minkvνinvi(kv)

)
∆V (3.162)

3.4.5. Electron Power Balance Equation

Electron power balance equation is formulated in Equation 3.56. For convenience,

this equation is written here again:

∂

∂t

(
3

2
neeTe

)
+∇·Qe = −eEa·Γe + Pdep + Pcoll

where the electron flux is calculated according to the drift-diffusion approximation 3.62,

the electron thermal flux is calculated as given in 3.77, the ambipolar electric field is

calculated as given in 3.74, the power deposition is calculated as given in 3.69, and the
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power loss due to collisions is calculated as given in 3.72.

This equation is discretized according to the finite differencing scheme. The first

term at the left hand side is discretized as:

3

2
ne,kpe

Te,kp − T oe,kp
∆t

The second term at the left hand side, electron heat flux term, is formulated as:

∇·Qe =
5

2
eTe

(
1

r

∂(rΓr)

∂r
+
∂Γz
∂z

)
− λth∇2Te

This equation is discretized as:

5

2
eTe,kp

(
Γr,kv − Γr,kv−nv

∆r
+

Γr,kp
r

+
Γz,ku − Γz,ku−1

∆z

)
− λth

(
Te,kp+1 − 2Te,kp + Te,kp−1

∆z2

+
Te,kp+np − 2Te,kp + Te,kp−np

∆r2
+

1

r

Te,kp+np − Te,kp−np
2∆r

)

The first term in the right hand side denotes the ambipolar field Joule heating. This

term is formulated as:

−eEa·Γe = −e
(
−Te
ne

)(
∂ne
∂z

Γz +
∂ne
∂r

Γr

)

This equation is discretized as:

e

ne,kp

(
Γz,kp

ne,kp+1 − ne,kp−1

2∆z
+ Γr,kp

ne,kp+np − ne,kp−np
2∆r

)
Te,kp

The second term at the right hand side denotes the power deposition into the plasma.

This term is discretized as:

1

2
σp,kpE

2
θ,kp

The last term of this equation is the power loss due to collisions. This term is treated
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as a source term and is discretized as:

ne,kpnn,kpe 〈veQion〉Uion + ne,kpnn,kpe 〈veQexc〉Uexc + 3
me

mi

e(Te,kp − Ti,kp)νeine,kp+

3
me

mi

e(Te,kp − Tn,kp)νenne,kp

where the terms in the angled brackets are calculated as a function of temperature

through an external function implemented into the code.

The discretizations given above result in the following coefficients for the coeffi-

cient matrix:

aN = −λth/∆r2 − 1

2∆r
λth/r

aS = −λth/∆r2 +
1

2∆r
λth/r

aE = −λth/∆z2

aW = −λth/∆z2

and the central coefficient is:

aP =
3

2
ne,kpe

1

∆t
+

5

2
e

(
Γr,kv − Γr,kv−nv

∆r
+

Γr,kp
r

+
Γz,ku − Γz,ku−1

∆z

)
+ 2λth/∆r

2+

2λth/∆z
2 − e

ne,kp

(
Γz,kp

ne,kp+1 − ne,kp−1

2∆z
+ Γr,kp

ne,kp+np − ne,kp−np
2∆r

)
(3.163)

The remaining terms are handled as the source term that builds up the right hand side

of the linear system. The source term is formulated as:

bsource =
3

2
ne,kpe

T oe,kp
∆t

+
1

2
σp,kpE

2
θ.kp − ne,kpnn,kpe 〈veQion〉Uion − ne,kpnn,kpe 〈veQexc〉Uexc−

3
me

mi

e(Te,kp − Ti,kp)νeine,kp − 3
me

mi

e(Te,kp − Tn,kp)νenne,kp

(3.164)
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3.4.6. Electric Potential Equation

Electric potential equation is formulated in Equation 3.81. For convenience, this

equation is written here again:

∇· (σ∇φ) = e∇· (nevi) +∇·
(

ek

meνelastic
∇(Tene)

)
+∇· (σ(ve,θ ×B))

where the cross-product of the electron velocity and the magnetic field is evaluated as:

v ×B =

∣∣∣∣∣∣∣∣∣
r̂ θ̂ ẑ

vr vθ vz

Br 0 Bz

∣∣∣∣∣∣∣∣∣ = (vθBz)r̂− (vrBz − vzBr)θ̂ + (−vθBr)ẑ

This relation will be used in the discretization of the last term of the electric potential

equation. The term at the left hand side of this equation consists of the Laplace

operator and discretized as:

σp,kp

(
φkp+np − 2φkp + φkp−np

∆r2
+
φkp+1 − 2φkp + φkp−1

∆z2
+

1

r

φkp+np − φkp−np
2∆r

)

The first term at the right hand side is formulated as:

e∇· (nevi) = e

(
∂(neui)

∂z
+

1

r

∂(rnevi)

∂r

)

This equation is discretized as:

e

(
ne,kuui,ku − ne,ku−1ui,ku−1

∆z
+
ne,kpvi,kp
rkp

+
ne,kvvi,kv − ne,kv−nvvi,kv−nv

∆r

)

The second term at the right hand side of the equation consists of the Laplacian

of the multiplication of electron number density and temperature, ∇2(Tene). The
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discretization of this term is:

ek

meνelastic

(
ne,kp+1Te,kp+1 − 2ne,kpTe,kp + ne,kp−1Te,kp−1

∆z2
+
ne,kp+npTe,kp+np

2∆r
+

ne,kp+npTe,kp+np − 2ne,kpTe,kp + ne,kp−npTe,kp−np
∆r2

)

The last term of the electric potential equation includes the cross product of the mag-

netic field and the electron velocity. The term is formulated as:

σp∇· (ve ×B) = σp

(
1

r

∂(rweBz)

∂r
− ∂(weBr)

∂z

)

This equation is discretized as:

σp,kp

(
we,kpBz,kp

rkp
+
we,kp+npBz,kp+np − we,kp−npBz,kp−np

2∆r
+
we,kp+1Bz,kp+1 − we,kp−1Bz,kp−1

2∆z

)

The discretizations given above result in the following coefficients for the coefficient

matrix:

aN = σp,kp/∆r
2 +

1

rkp

σp,kp
2∆r

aS = σp,kp/∆r
2 − 1

rkp

σp,kp
2∆r

aE = σp,kp/∆z
2

aS = σp,kp/∆z
2

and the central coefficient is:

aP = −2σp,kp/∆z
2 − 2σp,kp/∆r

2 (3.165)
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The remaining terms are handled as the source term that builds up the right hand side

of the linear system. The source term is formulated as:

bsource = e

(
ne,kuui,ku − ne,ku−1ui,ku−1

∆z
+
ne,kpvi,kp
rkp

+
ne,kvvi,kv − ne,kv−nvvi,kv−nv

∆r

)
+

σp,kp

(
we,kpBz,kp

rkp
+
we,kp+npBz,kp+np − we,kp−npBz,kp−np

2∆r
+
we,kp+1Bz,kp+1 − we,kp−1Bz,kp−1

2∆z

)
+

ek

meνelastic

(
ne,kp+np − Te,kp+np

2∆r
+
ne,kp+1Te,kp+1 − 2ne,kpTe,kp + ne,kp−1Te,kp−1

∆z2
+

ne,kp+npTe,kp+np − 2ne,kpTe,kp + ne,kp−npTe,kp−np
∆r2

)
(3.166)

The linearization and discretization schemes for the governing equations are com-

pleted with these explanations. The solution methodology and the implementation

details are explained in the following section.
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4. ALGORITHM

The equations presented in Section 3.1 and 3.2 are solved with the methods de-

scribed in Appendix B in a self-consistent manner. The three submodels, the electro-

magnetic model, the fluid model and the transformer model are executed in accordance.

All the submodels are connected to each other by transferring parameters to provide

the self-consistent solution. The relationship between the submodels is depicted in

Figure 4.1.

Before starting to solve the model equations, AETHER needs some input param-

eters from the user. Some of these parameters must be given (or calculated) to perform

the simulation. These input parameters for the dielectric wall configuration are listed

below:

• RF coil frequency

• Physical length of the domain in both axial and radial directions

• Number of coil windings around the chamber

• Coil radius

• Effective length of the coils

• Number of mesh nodes in radial and axial directions

• Time step for fluid and EM models

For the biased wall configuration, instead of the RF settings listed above, the

auxiliary electrode size and applied voltage should be given as input. In addition, the

external power deposition should be entered. The power deposition field can either be

uniform or distributed on the grid according to the particular problem setting.

The solution starts with the initial uniform electron temperature, plasma density

and conductivity fields, and an initial RF coil current value. First, the electromagnetic

model is solved and the resulting electric and magnetic fields are transferred to the

fluid model. These electromagnetic fields are used in evaluating the Lorentz force
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Figure 4.1. Numerical model and the flow of parameters between each submodel.

terms and the equations in the fluid model are solved in time. The resulting flow

parameters are used to calculate the plasma conductivity and this value is transferred

to the electromagnetic model, hence completing the coupling between the fluid and

electromagnetic models.

In addition to this coupling, there is also an input to transformer model from the

fluid model. Transformer model requires the flow parameters to evaluate the plasma

resistance and inductance. Transformer model calculates the plasma impedance, and

RF coil current is calculated and transferred to the electromagnetic model. The new

current value is used in electromagnetic model to solve for the electromagnetic fields

and the cycle is completed. The view of this scheme is presented in Figure 4.2.

Because of the difference in the time steps of electromagnetic and fluid models,

fluid equations are solved at predetermined time step intervals. For the ICP simula-

tions presented in this study, one fluid time iteration is performed between each 200

electromagnetic time iterations. Each fluid time step consists of inner iterations that

last until all the equations have residuals that lie below the tolerance value assigned

before starting the solution. In the beginning of each time step, linear solvers yield

high residual values for equations. As the number of inner iterations increase, these
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Figure 4.2. Fluid model algorithm and coupling with the electromagnetic model.

residual values decrease and eventually falls below the tolerance value, which is as-

signed as 1.0E-04 for this study. After the residuals fall below the tolerance, preferred

solutions are written to files and then copied as previous time step’s solutions for the

next time step. Plasma conductivity is recalculated to be sent to the electromagnetic

model. Afterwards simulation continues with the solution of electromagnetic model.

Users can either input the number of RF cycles or time steps for the simulation before

initiating the calculations, or can end the simulation as desired.
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5. RESULTS

In the results section, the verification of the model is performed by comparing

the results obtained from AETHER with the commercial software COMSOL Plasma

Module [41], which is validated as a reliable computational tool for the solution of the

fluid model for plasma [42]. The verfication study is presented in Section 5.1. Then the

model is applied to the RF ion thruster configuration to evaluate thruster performance

in Section 5.2.

5.1. Benchmark Problem: Argon ICP Enclosed within Dielectric Walls

The model explained in previous sections of this work is used to solve a benchmark

ICP configuration to verify the results in the Plasma Module of the commercial software

COMSOL. For the verification, the preferred discharge chamber is a cylinder made of a

dielectric, which is 7 cm long and has a diameter of 8 cm. RF power is deposited into the

plasma through the 10 coil windings around the chamber, which extends 5 cm in axial

direction. Driving frequency is 13.56 MHz. Argon is the type of the gas. Initial pressure

is 20 mTorr, which corresponds to 3.0E+20 m−3 neutral density. There is no neutral

gas inlet to the system. All the ions that reach the wall go through a recombination

process and directed back into the system as neutrals. The same configuration is solved

also with COMSOL and the results are compared. For comparison, two different power

deposition values, that result in steady-state solutions, are chosen. These values are

3500 W and 6000 W. The plasma density distribution obtained from AETHER at 10

miliseconds is shown in Figure 5.1. It is seen that the plasma is confined at the center

of the discharge chamber because of the losses to the walls. It is also seen that the

plasma density is slightly higher in the regions that are located below the coils (from

origin to 0.050 m in axial direction) compared to regions that do not lay under RF

coils (from 0.050 m to 0.070 m in axial direction).

The verification is performed by taking the data on two lines and comparing

the electron number density values along these lines for different power deposition
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Figure 5.1. Plasma density at the end of 10 miliseconds. Due to the losses to the

walls, plasma is confined in the center region of the domain.

values. The first line, L1 = |P1P2|, is the center line in radial direction, which starts

at P1 = (0.035, 0.000) and extends up to P2 = (0.035, 0.040). The number density

values along the line L2 are presented in Figure 5.2. The second line, L2 = |P3P4|, is

the center line in axial direction, which starts at P3 = (0.000, 0.020) and extends up

to P4 = (0.070, 0.020). The number density values along the line L2 are presented in

Figure 5.3.

As it can be seen from both Figure 5.2 and Figure 5.3, solutions that come

from AETHER matches with COMSOL’s Plasma Module results to a great degree.

The obtained results have also demonstrated grid independence. The comparison with

COMSOL completes the verification of the fluid and electromagnetic models. These

models are also verified separately by solving the lid-driven cavity problem and the

electromagnetic fields for a plasma torch configuration.

For the verification of the transformer model, a simple test case within AETHER

is considered to be sufficient. Transformer model takes the power to be deposited into

the plasma as one of the inputs. According to the power value, it arranges the current

to be supplied to the RF coils. The transformer model can be verified if the power given

as input to the model is equal to the power calculated using Equation 3.69, which is

evaluated with the plasma parameters that are independent of the transformer model.
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Figure 5.2. Results from AETHER and COMSOL along the line L1 for 3000 W and

6500 W.

Figure 5.3. Results from AETHER and COMSOL along the line L2 for 3000 W and

6500 W.
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Figure 5.4. Power deposition with time. Verification of the transformer model for

Pdep = 400 W.

For the verification, 400 W of power deposited into the plasma. The change of the

total power deposition with time is presented in Figure 5.4. It is observed that after 4

RF cycles, the amount of power deposited into the plasma becomes equal to the input

given to the transformer model.

The electric potential distribution is evaluated as presented in Figure 5.5. Here at

the boundaries of the plasma, which is the sheath edge, the electric potential is taken

as zero and potential values are evaluated with respect to the sheath edge potential.

It is also possible to assume that the walls have the 0 V boundary condition. If this is

assumed, the plasma potential can be calculated by adding the sheath potential drop

to the evaluated potential. The sheath potential is evaluated by equating the ion and

electron fluxes to the wall, which is the zero current condition 3.2 that is valid for

dielectric walls. According to the sheath potential drop formula 3.87, the potential

drop for the mean temperature, 3.93 eV, is 20.71 V.

5.2. RF Ion Thruster Performance Results

The discharge chamber of an RF ion thruster is very similar to the benchmark

problem solved in the previous section. In this section an example thruster configu-

ration, which is very similar to RIT-15LP [43], is modeled. The following design will

be referred as the concept design in the remaining of this study. This thruster has 15
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Figure 5.5. Electric potential distribution for the benchmark problem.

cm diameter and 7 cm axial length. The coil wrapped around the cylindrical discharge

chamber is represented on the axisymmetric domain with 13 equidistant coils. The RF

frequency is 2 MHz, which means that one RF cycle is 5.0e− 07 sec. Typical neutral

gas flow rates for 15-cm thrusters are found to be on the order of 10-13 sccm [9]. There

are RF thruster designs that work with a few sccm’s as well [8]. In this study gas flow

rates are tested from 4 sccm to 13 sccm to investigate various pressure levels.

The code requires a very little amount of change to simulate an RF ion thruster.

The major change is performed for the boundary conditions of the electromagnetic

equation. The magnetic field boundary condition incident on the grid is derived by

assuming that the perpendicular component of the magnetic field to the grid becomes

zero because grids have much higher electrical conductivity compared to the discharge

plasma:

1

r

[
∂(rAθ)

∂r

]
= 0 (5.1)

In addition to this condition, the azimuthal electric field on the grid boundary is zero.

To capture both of these effects, the approach used in [24] is utilized here, and the

magnetic vector potential is taken to be zero on the grid boundary. The dielectric wall

conditions are those applied in the benchmark problem.
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Figure 5.6. Radial center line plasma density variation for a 400 W thruster evaluated

on different grids.

Another change is performed at the boundary conditions for plasma fluid equa-

tions because of the existence of the grids at the end of the chamber. Grids have

transparency values defined for ions and neutrals, which indicate the ratio of the inci-

dent particles going through the grids. The remaining portion is assumed to be hitting

the grid wall. The grid boundary condition for neutrals is given in Equation 3.84.

In addition to the results evaluated for the benchmark problem, which are plasma

density, electron temperature, and electric potential distribution, there are additional

results that deserve attention. Beam current obtained from the ion thruster is directly

related to the thrust obtained from the device. The beam current is calculated as:

Ibeam = eniuiAgΦi (5.2)

where Ag is the whole grid area and Φi is the ion transparency of the grid. The ratio

of the power deposited into the plasma and the beam current give a measure for the

energy efficiency of the thruster. This ratio is called as the discharge loss per ion, and



85

formulated as:

ηd =
Pabs
Ibeam

(5.3)

where Pabs is the absorbed power by the plasma. The thruster designing effort is

directed at minimizing this parameter for the desired thrust value. All the other

parameters, including geometry, neutral gas pressure and accelerator grids are adjusted

to obtain a particular value of thrust with minimum discharge loss. Therefore this

parameter is used to evaluate the performance of designs accordingly in this study.

The physical meaning of the discharge loss per ion is important to understand the

concerns for a thruster design. This parameter corresponds to the energy spent for the

production of a single ion. For the Xenon atom, the first ionization potential is 12.1

eV as stated before in this text. But including the energy deposited into electrons that

do not necessarily lead to ionization and the wasted ions that collide with the wall and

become neutrals, the energy spent on an ion that can be extracted from the thruster

can reach the orders of 400-500 eVs. It is important to notice that all of this energy

is actually a loss for the whole system since it is spent only to the conditioning of the

propellant gas, and it should be minimized.

As shown in Section 5.1, the power to be deposited in the plasma can be suc-

cessfully imposed by the transformer model. Five different power deposition cases are

tested with 250-, 300-, 350-, 400-, and 450-W power deposition values for 4 sccm neutral

Xenon gas inflow.

Before presenting the results of these cases, it should be stated that the model

developed here satisfies the numerical accuracy criteria presented in [44]. The finite

volume discretization for the interior nodes is of second order. Also, the results of the

grid refinement are presented in Figure 5.6 to verify that the model built in this study

is grid independent.

The plasma density distribution for 400-W power deposition along with the rep-

resentation of the structured grids in the axisymmetric domain for the concept design
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Figure 5.7. Left: Plasma number density distribution. Right: Electron temperature

vs. power deposition.

are shown in Figure 5.7. The plasma density is observed to be maximum in the center

region of the thruster discharge chamber. The density decreases toward the walls and

the grid, where the ions are either neutralized at the wall or accelerated out from the

discharge chamber. This picture shows the same tendency as presented in [8] and [24].

The mean electron temperature value shows a similar trend with the examples

from the literature. In [8], the global temperature for 7-cm RF ion thruster is found to

be 3.2 eV. The mean temperature value evaluated in this study is very close to these

values. As it can be observed in Figure 5.7, the electron temperature reaches steady

state around values that are very close to each other for the range of power deposition

values tested. For all the cases, the steady-state temperature is approximately 3.08 eV.

This is a typical behavior for low-temperature plasmas, where additional power results

in higher ionization but not in appreciable temperature increase [1], [45].

The spatial distribution of power deposition in one cycle for the 350-W case after

the model reaches the steady state is shown in Figure5.8. This trend matches with the

one presented in [8]. It is observed that the power deposition is maximum in the top

region and varies with the current in time. The maximum penetration of the power

into the plasma occurs at 3/8 and 7/8 cycle ratios. There is a 1/8 cycle ratio phase shift

between the current maximum and the maximum value of the power penetration. It

is also observed from the numerical experiments that the penatration into the plasma
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Figure 5.8. Power deposition into the RF ion thruster over one RF cycle.

decreases with the increasing RF frequency, a trend that is verified with the skin depth

Equation 3.91.

The plasma density for different power deposition values is shown in Figure 5.9.

Steady-state plasma density is increasing with the power deposition. This trend is also

observed in [23]. It is observed a small drop at plasma density values in the beginning of

the simulation. The configurations tested with different power deposition values start

with the same initial condition and evolve in time. The reason for this drop is observed

to be the initial conditions. As long as the initial conditions stay within reasonable

values, it is observed that the simulations reach the same steady-state solution. Plasma

density values are observed to increase with increasing power deposition as opposed

to the case observed with the electron temperature. The beam currents are shown in

Figure 5.10. The current extracted from the thruster is found to be increasing with

the increasing power deposition. This is consistent with the plasma density data, since

the beam current is a function of the ion density incident on the grid, as shown in

5.2. The beam current is directly proportional to the thrust desired to be generated.

Neglecting the double ionization, assuming that the ions all fall through the same grid

potential, the linear relationship between the beam current and the thrust is given as
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Figure 5.9. Plasma density variation vs. RF cycle count for different power

deposition levels.

follows [22]:

T = Ib

√
2miVb
e

(5.4)

where Vb is the beam voltage. This relation requires the thruster designs to yield

specified beam currents to reach the thrust level aimed for the particular application.

Another way to express the thrust is to express it as the product of the mass

flow rate and the exhaust velocity: T = ṁivi. The mass flow rate can be calculated by

dividing the current to the elementary charge, e, assuming that all of the ions are singly

ionized and then multiplying it with the mass of an ion. The exhaust velocity can be

calculated with the energy balance if the initial ion velocity incident on the grid and

the potential drop between the accelerator grids are known. It should be remembered

that the exhaust velocity value that is calculated using this method is a global value

for the whole domain, and the calculation relies on the assumption that the ions fall

through the entire electrostatic potential drop between the accelerator grids.

The plot of the discharge loss per ion against the power deposition can be seen in
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Figure 5.10. Left: Beam current vs. deposited power. Right: Discharge loss per ion

vs. deposited power.

Figure 5.10. The discharge loss per ion is evaluated for various thruster configurations

in the literature. In [22], it is stated that an example 20-cm thruster can have low

discharge loss values as 253 eV/ion. It means that the discharge loss per ion values

obtained in this study are considerably high for a feasible thruster design. It can be

lowered by changing the neutral inlet flux, but for this study, the concern is not the

reduction of the discharge loss per ion, but rather to observe how it changes with

the varying power deposition. The behavior of the curve shows that the increase in

power deposition does not necessarily result in a proportional decrease or increase in

the discharge loss.

When the Xenon gas mass flow rate and the background neutral pressure are

increased, a higher power deposition is required to sustain the plasma as expected.

With the same discharge chamber geometry, the steady-state temperature is this time

much higher along with the power deposition. To observe the effect of high pressure,

the neutral flux is increased from 4 sccm to 13 sccm. The tested power deposition

values that yield steady-state solutions are 500-, 600-, and 700-W. As it is observed

with the previous configuration, the electron temperature yields average values which

are very close for each case. The average temperature change for each case versus time

is presented in Figure 5.11. For the 600 W case, the mean electron temperature is 4.31

eV.
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Figure 5.11. Mean electron temperature change vs. time for the high pressure case.

The discharge loss per ion value for this high pressure level is higher than the

previous configuration. For the three power deposition levels tested here, the discharge

loss per ion does not fall below 650 eV/ion. On the other hand, the lower power

deposition values do not result in a steady-state solution, and the plasma turns out to

be not sustainable with lower power deposition values.

This lays out another constraint for the thruster design. From the low-pressure

configuration, considering Figure 5.10, it could be derived that power deposition does

not necessarily increase or decrease the discharge loss per ion. And from the high

discharge loss per ion values obtained from the high pressure case, it can be derived

that the increasing the mass flow rate and the resulting high electron temperature do

not necessarily result in a lower discharge loss per ion.
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6. CONCLUSIONS

An extensive 2D axisymmetric fluid plasma model, which is coupled with the

developed electromagnetic and transformer models, are successfully developed and im-

plemented. The implementation of the model is done using the C++ programming

language.

In this study, the finite volume discretization of the fluid equations that describe

the behavior of a partially ionized ICP and include the coupling between the fluid and

the electromagnetic models is explained. Additionally a transformer model is included

to capture the matching circuit effect to simulate the laboratory experiments. These

functionalities are wrapped under a software framework, which can be used by the

end-user without delving into the details of the code.

To our knowledge, this is the only software and model developed that can capture

the coupling between the fluid and electromagnetic equations and relate plasma param-

eters to laboratory experiments without requiring an empirical input. Details regarding

the finite volume discretization of the equations, velocity and pressure correction terms

for the modified Euler equations in the scope of the finite volume method are given ex-

tensively. Also the finite volume scheme adapted for the plasma fluid equations will be

presented for the first time with this work. Implicit handling of the time-dependency,

convergence criteria, matrix storage scheme, multi-core parallelization, linear solvers,

and implementation of the code are explained.

The verification of the model is performed by comparing the results of the AETHER

platform with the results of the commercial software, COMSOL’s Plasma Module. It

is observed that the results from AETHER match those that are obtained from COM-

SOL’s Plasma Module with a little amount of overshoot.

The performance parameter of an RF ion thruster, the discharge loss per ion, is

the ratio of the power input to beam current. The grid at the end of the discharge
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chamber creates the driving electrostatic force for the beam current. Therefore, accel-

erator grids play an important role in overall ion thruster performance. The design of

these accelerator grids is the subject of the ion optics physics. These factors should be

considered for a complete thruster performance evaluation. In this thesis, the perfor-

mance of the thruster is evaluated only by considering the factors that depend on the

discharge itself.

The example discharge chamber design used in this study with different power

deposition values shows that interdependent plasma parameters result in a nonlinear

relationship between the discharge loss per ion and the power deposition. For a given

design, a higher power deposition can result in a lower discharge loss per ion value and

vice versa.

The behavior of the discharge loss shown in Figure 5.10 indicates the existence

of an optimization problem. For a given geometry and a given coil configuration, it

is possible to find an optimum configuration that yields the lowest discharge loss per

ion value. The configuration should also yield the desired beam current and therefore

the desired thrust. The solution of this optimization problem is left as future work.

It is observed that after a certain value of power deposition, increasing beam current

also results in increasing discharge loss per ion. It means for a particular thruster

configuration, there is a trade-off between the beam current and the discharge loss,

which should be considered during the thruster design process.

The model developed here shares a common bottleneck with most of the other

plasma codes. It requires rather accurate initial conditions. It is very challenging to

find initial conditions for the plasma if a previous empirical or numerical data is not

available. In this study a great effort is spent to find the configurations that would

reach steady-state in a reasonable amount of computational time. Additionally, as

future work, a plasma instability study can be performed. An introduction to this

type of analyses is to be found in [46].
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An extension of the code can be possible if the capability to capture the electro-

static fields in plasma is implemented. This can also lead to the simulation of various

types of plasma sources where the nonambipolar flow is dominant. The simulation of

these type of flows could be possible if electrons are solved separately from the ions and

the electric potential can be evaluated by solving the Gauss’ Law. An attempt to these

type of simulations can be found in [47]. The interested reader should also consider

looking into the different sheath phenomena observed in these types of plasma [48].

The model and the implementation can currently handle structured grids with

axially symmetric domains. As future work, the extension of the code into three dimen-

sions can be performed to gain the capability of simulating wider scope of geometries.

The code is also parallelized for shared memory structures, such as a multi-core system

with single processor. The distributed memory parallelization can be performed with

MPI (message passing interface) as future work.
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APPENDIX A: NUMERICAL CALCULATION OF THE

ELLIPTIC INTEGRALS OF FIRST AND SECOND KIND

The elliptic integrals are used to evaluate the magnetic vector potential. The

elliptic integral of the first kind is:

K(m) =

π/2∫
0

dφ√
1−m2 sin2 φ

(A.1)

The elliptic integral of the second kind is:

E(m) =

π/2∫
0

√
1−m2 sin2 φ dφ (A.2)

These integrations are performed numerically using the composite trapezoidal rule.

The composite trapezoidal rule is defined as in [49]:

b∫
a

f(x) dx =
h

2
[f(a) + 2f(x1) + . . .+ 2f(xn−1) + f(b)] (A.3)

where h = (b− a)/n for n subintervals. For the implementation, n is chosen to be 50.

The elliptic integral functions are embedded into ppsSolverHelpers.cpp



95

APPENDIX B: LINEAR SOLVERS

For 2D axially symmetric domain, the second order finite volume and finite differ-

ence discretizations result in a banded matrix structure for each equation. This banded

structure consists of five diagonal entries and zeros everywhere else, as depicted in

FigureB.1. The preferred sparse matrix storage scheme is compressed diagonal storage

(CDS) and it is implemented as described in [3]. To solve these linearized systems,

the utilization of an iterative solution scheme is mandatory. Jacobi, Gauss-Seidel [49],

GMRES [4] and ILU preconditioned GMRES [50] methods are implemented in the

software framework as solvers. These solvers are implemented considering the matrix

storage scheme used. All equations are solved successively and residual is reduced

below a predetermined threshold for all equations.

Among these solvers, Jacobi and Gauss-Seidel methods are considered stationary,

and GMRES is considered among non-stationary methods [3]. The details of these

solvers are presented in the following sections.

Jacobi Method

The Jacobi method is the most trivial iterative solution technique presented in

this study to solve the linear systems arising from the discretization of the governing

equations. To solve the linear system, Ax = b, the following algorithm is utilized:

Figure B.1. Pentadiagonal matrix structure resulting from the discretization of

equations.
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Figure B.2. Algorithm for the Jacobi Method [3].

Each row of the resulting coefficient matrix actually represents the coefficients of the

variables for an equation. For the ith equation, and hence for the ith row:

n∑
j=1

ai,jxj = bi (B.1)

In the scope of the Jacobi method, the ith equation is solved for the ith variable while

keeping the other variables constant. This leads to:

xi =

(
bi −

∑
j 6=i

ai,jxj

)/
ai,i (B.2)

The formula given above can be formed into an iterative scheme. Denoting the iteration

count with k, the iterative scheme is expressed as:

xki =

(
bi −

∑
j 6=i

ai,jx
k−1
j

)/
ai,i (B.3)

The pseudocode for the Jacobi method is given in Figure B.2. The advantage of this

solver is that it can be executed in parallel. As it can be seen from the iterative

formulation B.3, each row can be executed at the same time. This is how this solver is
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Figure B.3. Algorithm for the Gauss-Seidel Method [3].

implemented in the scope of AETHER.

Gauss-Seidel Method

The Gauss-Seidel method is a modified version of the Jacobi method. In the

Jacobi method, as explained in the previous section, each component of the variable

vector, xi, is calculated by holding the other variables fixed at the values obtained from

the previous iteration. In the Gauss-Seidel method, the equations are examined one at

a time in sequence, and the results from the current iteration are used as soon as they

are available. This results in the following formula to calculate the variables:

x
(k)
i =

(
bi −

∑
j<i

ai,jx
(k)
j −

∑
j>i

ai,jx
(k−1)
j

)/
ai,i (B.4)

The pseudocode of this algorithm is presented in Figure B.3. Here it should be noted

that the computation given above must be performed in series. Each calculation in one

iteration depends on the other calculations in the same iteration, therefore paralleliza-

tion of this algorithm is not possible. But compared to the Jacobi method performed
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Figure B.4. Algorithm for the Generalized Minimal Residual (GMRES) Method [4].

in series, the Gauss-Seidel method results in faster convergence.

GMRES: Generalized Minimal Residual Method

The Generalized Minimal Residual (GMRES) method is a Krylov subspace method

developed to solve nonsymmetric and not positive real linear systems. GMRES utilizes

the mathematical properties of the Krylov subspace Kk ≡ span{v1, Av1, ..., A
k−1v1}

and its l2-orthonormal basis {v1, v2, ..., vk} .

The full description of the method is presented in [4] and will not be explained

here with all the details. But it is necessary to describe the flow of the algorithm

and the mathematical principles that this method relies on. The pseudocode of the

algorithm is presented in Figure B.4. The algorithm starts with an initial guess, as

most iterative schemes do. The residual (r0 = b − Ax0) that is computed from this

initial guess is used to form the first basis vector (v1) of the l2-orthonormal basis of the

Krylov subspace. Vm is initialized as the matrix whose columns are the l2-orthonormal
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Figure B.5. Algorithm for the ILU preconditioned Generalized Minimal Residual

(GMRES) Method [3].

basis {v1, v2, ..., vm}. The main loop in the GMRES algorithm calculates the remaining

vectors of this basis and generates a matrix Hm ≡ V T
mAVm, which is an upper m×m

Hessenberg matrix whose entries are the scalars hi,j. Here the parameter m is called as

the Krylov subspace dimension. m is generally held is a small number, since when m

increases the number of vectors requiring storage increases linearly and the number of

multiplications with 1
2
m2N , where N is the size of the basis vectors [3]. Therefore the

algorithm is restarted at every m steps to accelerate the solution. In the last step of

the algorithm, it is seen that the vector y is calculated in the scope of a least squares

problem. This problem is solved by the QR factorization of the Hm matrix generated

through plane rotations. The QR factorization is rather simple to implement thanks to

the fact that Hm is an upper Hessenberg matrix. The implementation of this scheme

is performed as given in [3] and [51].

ILU-preconditioning of GMRES
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The convergence rate of a linear method depends on some properties of the co-

efficient matrix. These properties, which are directly related to the convergence of the

used method, are called as spectral properties. The idea of preconditioning focuses

on transforming the coefficient matrix to obtain more favorable spectral properties [3].

The preconditoner is often represented with a matrix, M , that either approximates

the coefficient matrix, A, or its inverse, A−1, in some way and it transforms the linear

system as:

M−1Ax = M−1b or MAx = Mb (B.5)

ILU-preconditioning is one of these methods where the coefficient matrix, A, undergoes

an LU-factorization. LU-factorization is the decomposition of the coefficient matrix,

A, as the product of a lower and an upper triangular matrix (A = LU). While applying

an LU-factorization to a coefficient matrix, it is desirable to obtain a similar matrix to

the coefficient matrix in terms of the storage requirements. The incomplete LU factor-

ization is performed to preserve the original sparsity pattern of the coefficient matrix,

since it fills only the stored nonzero entities in the original matrix. The pseudocode of

the algorithm is presented in Figure B.5.

The ILU-preconditioning is implemented into the code and the choice left to the

user whether to utilize it with GMRES. A computational cost analysis should be made

before applying this preconditioner to solve an equation, because generating the ILU

factorization and applying the required forward and backward substitutions also result

in extra computational cost. In our implementation it is observed through numer-

ical experiments that the application of ILU-preconditioning decreases the required

computational time to solve our equations.
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APPENDIX C: IMPLEMENTATION OF THE

SOFTWARE: AETHER

A software is built in the scope of this work, which is named as AETHER. The

software is built according to the model-view-controller design methodology [52] in

C++ programming language. The user interface is developed using the WxWidgets [53]

cross-platform user interface C++ library. The software has an OpenGL renderer for

results visualization. The Visualization Toolkit (VTK) [54] is utilized for visualization

purposes. The solvers and the mathematical calculations are implemented mostly

parallel, providing 100% CPU usage during the solution process. For the multi-core

parallelization Microsoft’s Parallel Patterns Library [55] is utilized.

The model-view-controller design of the algorithm and the classes under each

category is presented in Figure C.1. The classes that build up the software bear the

abbreviation pps, which stands for plasma physics simulations, in front of their names.

The hierarchy between the classes in this design methodology is very important. The

user executes commands through the controller class, ppsControl. The controller class

inherits the graphical user interface (GUI), where the user gives commands to the

software. The viewer classes include the objects on the user interface through the

ppsMainFrame class, including all the buttons, menus and selection boxes, etc. The

VTK is incorporated into the software and the user interface through the ppsVTKView

class. When the user executes the solve commands, a subroutine in the controller

class passes the information on the GUI to the classes in the Model group and solves

the problem. To facilitate the communication, there is an umbrella class, named as

ppsModel, which is used to receive the commands from the controller class and transfer

them to the corresponding physical models.

Except for the VTK and WxWidgets toolkits for user interace development, there

are no other external package incorporated into the code. All of the computations are

performed using the in-house developed C++ routines. Since there is no external
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Figure C.1. Model-view-controller design of the software AETHER, and the hierarchy

between classes.

package used for mathematical operations either, operations like vector dot product,

matrix-vector multiplication, matrix-matrix multiplication, etc. are implemented using

functions under a class.

The coding effort has started from the lowest level with these algebraic operations

and useful routines. These operations include averaging of a vector, writing a vector

to a file whose name to be specified, efficient multiplication of a pentadiagonal matrix

with a vector, writing a coefficient matrix to a file whose name to be specified, filling

a vector with zeros, initializing a dynamic vector whose size and dimensions are to be

given as inputs, and copying a vector’s entries to another. These functions build up

the class structure named as ppsSolverHelpers.

The solver class is built as the next step. The solvers described in Section ??

are implemented into the ppsSolvers class. As long as the compressed diagonal matrix

storage scheme is utilized, these solvers along with the ppsSolverHelpers can be used

independent of the software with other projects. The solver classes are created in

ppsFluidModel and ppsEMModel, and can be accessed from these classes.
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Figure C.2. The graphical user interface (GUI) of the AETHER software. Left hand

side of the software is separated for the settings modifiable by the user. Right hand

side is split into two, where the upper side is the visualization engine, and the lower

side is the text output from the software.

The user interface of the software is built concurrently with the model and mod-

ified according to the developments in the model. The development of the user inter-

face with wxWidgets is performed with a trivial design program called wxGlade, which

converts the user interface elements like buttons and menus to the commands that

are used by wxWidgets. VTK is incorporated manually by using an external class,

called wxVTKRenderWindowInteractor, that makes it possible to connect the VTK

with wxWidgets. The design of the user interface is similar to the structure of the

many CAE programs, where the left panel is dedicated to the user input and the right

panel is designated for the software output. The final form of the GUI is depicted in

Figure C.2.

The most important element of the code is the generation of the linear systems

that are obtained after finite volume and finite difference discretizations. These com-

putations are performed within the physical model classes, ppsFluidModel and ppsEM-

Model. All of the coefficient matrices and the variables are stored in separate arrays
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to eliminate all the dependencies that may cause problems for parallelization. When

the program is first started, the dynamic arrays that store the parameters are not yet

initialized. After the user enters the sizes of the grid and the physical dimensions of

the domain and hits the execution button, the dynamic arrays are initialized using this

input.

It is possible from the GUI to specify which approximations are to be applied to

the model. The text output screen is designed to give different outputs according to

the approximations. Residuals are to be followed easily from the text output screen

so it is possible to say whether the equations solved have converged, or if there is a

convergence problem, which equation needs to be investigated. To save the results of

a configuration, output text files are generated with predetermined time step intervals

for the variables solved in the model.

Other than the parallelization routines which are performed with the Microsoft

Parallel Patterns Library, the remaining parts of the code are cross-platform, which

means that the implementation of the software into UNIX based operating systems is

possible. It is designated as a future work to create a version of the software that can

work in parallel also in UNIX based operating systems by utilizing parallelization tools

like OpenMP and MPI.
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APPENDIX D: GLOBAL NEUTRAL PARTICLE

BALANCE AND ELECTRON ENERGY BALANCE

The neutral particle balance and the electron energy balance inside an RF ion

thruster can be evaluated using a global balance as presented in [8]. These global

balance equations are presented also here. These routines are implemented in AETHER

and can be used to decrease the computational time. The neutral particle balance is:

∂

∂t
(nnV ) =

ṁ

mi

+

∫∫
wall

ΓwalldA+

∫∫
grid

(1− φi)ΓgriddA− φnAgrid
nnc̄n

4
−
∫∫∫

ṅedV

where ṁ is the flow rate in kg/s, Γ denotes the ion flux to the walls and the grid, φi

is the grid ion transparency, φn is the grid transparency to neutrals, c̄n is the average

neutral thermal velocity. The first term on the right hand side is the particle injection,

the next two terms denote the recombination, the fourth term denotes the escaped

neutrals through the grids, and the last term is the particles that are ionized. If

the user prefers to use the global neutral particle balance, the neutral continuity and

momentum equations are not solved within each time iteration. The electron energy

balance is formulated similarly as follows:

∂

∂t

(
3

2
kTe

∫∫∫
nedV

)
=

∫∫∫
j2
e,θ

σ
dV −

∫∫∫
ṅeeVidV −

∫∫∫
ṅexceVexcdV

−
∫∫
wall

(2kTe + eφsheath) ΓwalldA

where je,θ is the azimuthal electron current, Γwall is the electron flux to the walls, ṅe

is the ionization rate, and ṅexc is the excitation rate. The term on the left hand side

denotes the time rate of change of the thermal energy. The first term on the right hand

side is the power deposition to the plasma, the second term on the right hand side is

the power loss due to ionization collisions, and the third term on the right hand side is

the power loss due to excitation collisions. The last term denotes the power loss due

to the electrons that can overcome the sheath potential and leave the system.
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APPENDIX E: LIST OF PUBLICATIONS FROM THIS

RESEARCH PROJECT

The conference proceedings and journal submissions that have been produced

during this research project are listed below:

Journal Publications

1. Turkoz, E.; M. Celik, “AETHER: A simulation platform for inductively coupled

plasma,” Journal of Computational Physics, March 2014 (Submitted).

2. Turkoz, E.; M. Celik, “2D electromagnetic and fluid models for inductively cou-

pled plasma for RF ion thruster performance evaluation,” IEEE Transactions on

Plasma Science, Vol. 42, No. 1, pp. 235-240, 2014.

Conference Proceedings

1. Turkoz, E.; M. Celik, “2D axisymmetric fluid and electromagnetic models for in-

ductively coupled plasma (ICP) in RF ion thrusters,” 33rd International Electric

Propulsion Conference, Washington, DC, 2013, IEPC-2013-294

2. Turkoz, E.; M. Celik, “2D fluid model for axisymmetric RF ion thruster cylindri-

cal discharge chamber,” 49th AIAA/ASME/SAE/ASEE Joint Propulsion Con-

ference, San Jose, CA, July 2013, AIAA-2013-4110

3. Turkoz, E.; M. Celik, “Optimization of radio-frequency ion thruster discharge

chamber using an analytical model,” 6th International Conference on Recent

Advances in Space Technologies (RAST), pp. 511-516, Istanbul, Turkey, 12-14

June 2013

4. Yavuz, B.; E. Turkoz, M. Celik, “Prototype design and manufacturing method

of an 8 cm diameter RF ion thruster,” 6th International Conference on Recent

Advances in Space Technologies (RAST), pp. 619-624, Istanbul, Turkey, 12-14

June 2013
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